
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


1 

Assessing uncertainty in the cost-effectiveness of agricultural greenhouse gas mitigation 

 

Vera Eory1*, Cairistiona F. E. Topp1, Dominic Moran1, Adam Butler2 
1 Research Division, SRUC, West Mains Road, Edinburgh EH9 3JG, UK 

2 Biomathematics & Statistics Scotland, JCMB, The King's Buildings, Edinburgh, EH9 3JZ, 

UK 

 

Contributed Paper prepared for presentation at the 88th Annual Conference of the 

Agricultural Economics Society, AgroParisTech, Paris, France 

9 - 11 April 2014 

 

Copyright 2014 by Vera Eory, Cairistiona F. E. Topp, Dominic Moran, Adam Butler. All 

rights reserved. Readers may make verbatim copies of this document for non-commercial 

purposes by any means, provided that this copyright notice appears on all such copies. 

 

* Corresponding author. Tel.: +44 131 535 4301; fax: +44 131 535 4345. E-mail address: 

vera.eory@sruc.ac.uk. Address: Land Economy, Environment & Society, SRUC Edinburgh 

Campus, King's Buildings, West Mains Road, Edinburgh EH9 3JG, UK 

 

Acknowledgement 

This research was undertaken within the Scottish Government Rural Affairs and the 

Environment Portfolio Strategic Research Programme 2011-2016. Specifically with funding 

provided to ClimateXChange. For more information please see: 

http://www.scotland.gov.uk/Topics/Research/About/EBAR/StrategicResearch/future-

research-strategy/Themes/ThemesIntro. Further funding was provided by the AnimalChange 

project which received funding from the European Community's Seventh Framework 

Programme (FP7/ 2007-2013) under the grant agreement n° 266018. 

 

Abstract  

Information on the uncertainty of quantitative results feeding into public decision making is 

essential for designing robust policies. However, this information is often not available in 

relation to the economics of greenhouse gas (GHG) mitigation in agriculture. This paper 

analyses the uncertainty of the mitigation estimates provided by a Marginal Abatement Cost 

Curve (MACC). The case study is based on the GHG MACC developed for Scottish 

agricultural soils. The qualitative assessment disentangled the different sources and types of 

uncertainty in the cost-effectiveness analysis of GHG mitigation options. The quantitative 

assessment estimated the statistical uncertainty of the results by propagating uncertainty 

through the model, using three uncertainty scenarios. The results show that the uncertainty in 

the economically optimal abatement in Scottish agricultural soils is high with the medium 

and high uncertainty scenarios, with the ratio of the 95% CI to the mean being 0.57-1.01 and 

0.98-1.4, respectively, while the low uncertainty scenario resulting in a ratio of the 95% CI to 

the mean of 0.24-0.68. However, the ranking of the measures are relatively robust with all 

three uncertainty scenarios, especially in terms of which options have cost-effectiveness 

below the carbon price threshold.  

 

Keywords: marginal abatement costs curves, uncertainty, greenhouse gases, agriculture, 

GHG mitigation 

JEL code: Q54 
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Introduction 

With the effects of global warming becoming apparent, governments are introducing policies 

to reduce greenhouse gas (GHG) emissions across their whole economies. These policies, 

designed to promote climate change mitigation, should be informed by sound scientific 

evidence on the effectiveness of possible mitigation options. Information about the 

feasibility, GHG abatement potential and cost of these options are essential for designing 

mitigation policies. However, estimating this information is inherent with uncertainties. 

Robust policies, which aim to achieve their environmental, economic and social targets 

across a range possible futures, have to take into account these uncertainties (Lempert and 

Schlesinger 2000). Ignoring uncertainty can result in sub-optimal recommendations for 

policy development and can thus be costly to society. 

In agriculture, where the high variability in GHG emissions hugely constraints the 

implementation of a robust GHG emission quantification (Olander et al. 2013) – which, in 

turn, is essential in the implementation of market-based instruments – non-market based 

environmental policies are prominent. These instruments are either based on voluntary uptake 

with no need for monitoring (e.g. information provision on resource efficiency via advisory 

services), or require only the monitoring of management practices but not the emissions (e.g. 

limits on nitrogen fertiliser use). However, for such policies policy makers have to select the 

set of management options to be supported, and information on uncertainties in the 

effectiveness and costs of the options is needed for such an exercise. 

In certain fields of climate change research integrating uncertainty in the analysis has become 

the norm, particularly in the physical sciences (like climate modelling), but also to some 

extent in economic research. Peterson (2006) gives an extensive overview of the economic 

models on climate change which integrate uncertainty in their assessments. These exercises 

either target the global economy or the energy system, usually reporting on the uncertainties 

in GHG emission, damage costs or mitigation costs. Such results are particularly valuable for 

high level policy decisions, but, being global or regional representations, they are limited in 

advising policy development at the national level, where information on specific mitigation 

options, locations and sectors are needed. However, authors discussing the economics of 

GHG mitigation in agriculture rarely feature uncertainty analysis in their results. Some 

exceptions include uncertainty analysis of mitigation potential of biogas production in 

Germany (Meyer-Aurich et al. 2012), and farm level mitigation potential and cost estimates 

on a UK farm with uncertainty reported on the total emissions and on one mitigation option 

(Gibbons et al. 2006). This lack of uncertainty analysis in agricultural economic assessments 

can be partly explained by the difficulties imposed by the heterogeneity of the sector 

(regarding farming systems, farming practices, climatic and soil conditions and farmers’ 

behaviour) and by the variety of practical implementations of the possible mitigation options, 

both of which impede the availability of uncertainty information on underlying inputs of 

economic assessment models.  

Information on uncertainty only becomes relevant if it is included in the policy decision 

making process. There are a range of decision support tools to help communicating 

uncertainty to policy makers. Uncertainty which can be quantified can be included in the 

economic assessment, for example, by the propagation of uncertainty (Tol 1999) or by cost-

benefit analysis with real options (Maart-Noelck and Musshoff 2013). Other tools, such as 

robust decision making techniques (Hallegatte et al. 2012; Kann and Weyant 2000; 

Vermeulen et al. 2013), allow unquantifiable elements of uncertainty to be taken into 

account. Nevertheless, the complexity in uncertainty analysis often negatively impacts on the 

knowledge exchange between scientist and policy makers, resulting in limited integration of 

uncertainty information in the decision making process (Knaggard 2013). A mutual 

engagement from both scientists and policy makers could help to overcome some of the 
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obstacles in communicating and utilizing uncertainty information (Smith and Stern 2011).  

Here we make a systematic attempt to analyse the uncertainty in the cost-effectiveness 

assessment of GHG mitigation in agriculture, with the ultimate aim of providing policy 

recommendations. The systematic analysis consists of two parts: i) establishing an inventory 

of the uncertainties which play a role in cost-effectiveness assessment (specifically marginal 

abatement cost curves, MACCs) in agricultural GHG mitigation, and ii) quantitative 

uncertainty assessment of the GHG mitigation cost-effectiveness assessment relating to 

Scottish agricultural soils.  

The marginal abatement cost curve analysis is a decision making tool widely used today for 

assessing GHG mitigation policy. It has been deployed in numerous instances to estimate the 

optimal level of mitigation effort and to prioritise mitigation actions in terms of their cost-

efficiency (i.e. the cost of reducing GHG emission), often feeding into the policy process, for 

example in the EU, US and UK (Kesicki and Strachan 2011). The MACCs’ popularity with 

policy makers can be partly explained by its high visuality: it is able to convey condensed 

information in a relatively simple way. However, this power has to be used with caution, as it 

can increase the risk of overconfidence in the results – especially if uncertainty is not 

represented, which is often the case. One of the noted shortcomings of most of the MACC 

analyses by date is the lack of uncertainty analysis (Kesicki and Ekins 2012), which is 

particularly true for the land use sector. Nevertheless, it is possible to address this 

shortcoming of the MACC analysis, as we present in this paper. 

The paper is structured as follows. The sources of uncertainties in the cost-effectiveness 

assessment are explored in the next section. The data and methods of the quantitative 

uncertainty assessment are presented in Section 3, while the results are introduced in Section 

4. Section 5 discusses the importance of the different sources of uncertainty in the economic 

assessment, examines the quantitative results and provides recommendations for policy 

makers and for future research. 

 

Sources of uncertainty in the economic assessment of agricultural GHG mitigation 

Uncertainty around the level, efficiency and costs of future GHG mitigation activities is 

embedded in the complex feedback loop existing between the economy and the environment, 

with each step having layers of uncertainty attached to it. Figure 1 provides a schema of this 

loop, featuring the importance of GHG mitigation and policy. Looking at the sources of 

uncertainty we see that our representations about the processes happening in the environment 

(GHG concentration, weather, systems impact) are dominated by biogeochemical 

uncertainties. Modelling the activities in the economy and the effects on society bears the 

additional uncertainties around technological solutions, economical processes, human 

behaviour and politics.  
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Figure 1. Sources of uncertainty in the climate change feedback loop (based on Smith and Stern (2011)) 

 

In the case of agriculture and land use natural processes have a major influence on activities 

and emissions, and therefore play a key role in determining the effectiveness of mitigation 

options. Modelling the choice of land use activities, types of crops, number of livestock, and, 

equally importantly, the farm management activities are hindered by biogeochemical 

uncertainties. For example, the variability in weather conditions makes the biophysical 

processes and therefore the nitrous-oxide (N2O) emissions variable, resulting in uncertainty in 

their estimates. At the same time the variable weather also has an impact on farmers’ decision 

making about the timing and amount of nitrogen fertiliser used, which in turn affects the 

emissions and ultimately the effectiveness of the mitigation options applied. The economic 

and policy environment is also a big driver of decisions on agricultural activities, therefore 

economical and political uncertainties prevail in our representations. For instance, the future 

evolution of energy and agricultural commodity prices together with renewable policies will 

have an important impact both on the land area used for human food and animal feed 

production and on the financial costs and benefits of mitigation technologies. An important 

addition to the list of uncertainties is the behavioural aspect of the main decision makers 

(farmers and other land managers), which, also in dependence on the policy environment, 

defines the diffusion of mitigation technologies and thus has a direct effect on total 

abatement. 

Some of these uncertainties can be quantified and included into numeric models – we refer to 

this as statistical uncertainty (some authors use different terms, like imprecision, Knightian 

risk, conditional probability). Statistical uncertainty can be expressed via probabilities, for 

example the 100-year global warming potential of methane is estimated to be in the range of 

19.3-31.5 with a 90% confidence, with a mean of 25.0 (Reisinger et al. 2010). In the 
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agricultural context statistics about current and historic cropping and livestock activities, 

input and output prices, experimental data of gaseous emissions and carbon sequestration all 

have statistical uncertainties, even though this information is not always reported. Besides the 

uncertainties of experimental data models, as imperfect tools representing the reality, also 

have their own uncertainties which can be quantified if compared with observed data. An 

example can be a farm economic model looking at the changes in the farm profit: its results 

can be compared with existing data on farm profits and the error in the results can be 

quantified.  

On the other hand, there exist uncertainties which cannot be quantified statistically. This deep 

uncertainty (also called ambiguity or Knightian uncertainty) can arise for many reasons, and 

becomes more prominent with models of complex systems predicting future scenarios. If the 

model’s predictions are too far in the future, or the phenomenon cannot be simulated 

realistically, we face deep uncertainty (Hallegatte et al. 2012; Smith and Stern 2011).  

Value uncertainty occurs when a value depends on personal judgement, like the discount rate 

chosen to reconcile the needs of future and current generations, or the value of human life 

(Kann and Weyant 2000). However, value uncertainty can be quantitatively modelled with 

scenarios, though the results of scenarios cannot be aggregated. 

The qualitative and quantitative assessment in this paper explores the uncertainty in the 

MACC analysis of the cropland- and grassland-related GHG mitigation options in Scotland. 

MACC analyses are models which build on data obtained often both from biophysical and 

economic models and from expert opinions. By the nature of the outputs of the MACC 

models, they can be neither calibrated nor validated – this is, in itself, is a deep uncertainty in 

the MACC analyses. Though the uncertainty of the MACC models themselves cannot be 

assessed against observations, uncertainty information can still be obtained about the results 

of the MACC analysis by looking at the statistical and deep uncertainties of the inputs. The 

statistical uncertainty of the inputs – if information exists on them – then can be propagated 

through the MACC model. 

The main uncertainties in the economic assessment of agricultural GHG mitigation are 

described in Table 1. Deep uncertainties prevail in all of the model inputs. Value 

uncertainties exist regarding the global warming potential (GWP) metric and the discount 

rate. As for the latter, both private and social discount rates can be used when building 

scenarios, relevant to private decision making and public decision making, respectively. Deep 

uncertainties also arise from the underlying modelling processes. This is partly a result of 

predictions about the future of our complex ecological-economic system which will exist 

under a climate we do not have observations about, and partly stems from the lack of 

uncertainty information from the underlying modelling exercises. Uncertainties can, at least 

in theory, be quantified wherever data are collected about current natural, economic or 

behavioural phenomena, such as energy prices, current uptake of low-carbon technologies by 

farmers or enteric methane emissions from cattle. However, given the variability in these 

phenomena, modelling is often needed to generate input for the cost-efficiency assessments – 

adding deep uncertainty to every input of the MACC models. If neither direct data nor 

modelling results are available as inputs, assessments often rely on expert knowledge, where 

the quantification of uncertainties is even more difficult, and therefore often ignored, 

aggravating the deep uncertainties in the assessment.  

 
Table 1. An inventory of uncertainties in the economic assessment of agricultural GHG mitigation 

Model inputs Source of uncertainty System 
Type of 

uncertainty 

Global warming potential 

(GWP) of GHGs 
Variability of the atmospheric 

processes 
Biogeochemical Statistical 
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Model inputs Source of uncertainty System 
Type of 

uncertainty 

Modelling future atmospheric 

processes 
Biogeochemical 

Statistical and 

deep 

Choice of GWP metric Economic Value 

Agricultural activity levels 

(e.g. 0.9 M ha permanent 

grassland) 

Historic agricultural activity, 

prices and other economic 

variables 
Economic Statistical 

Modelling future changes in 

farming activities as a function of 

demographic and economic 

changes 

Economic and 

political 
Statistical and 

deep 

GHG abatement achievable 

by the mitigation options 

(e.g. 0.1 t CO2e/ha/year) 
AND 
Biophysical interactions 

between the mitigation 

options (e.g. 10% reduction 

in the GHG abatement of 

option A if applied together 

with option B) 

Variability of the weather and in 

the soil processes involved in N2O 

emissions 
Biogeochemical Statistical 

Modelling future soil processes Biogeochemical 
Statistical and 

deep 

Modelling how farmers will 

actually implement the mitigation 

options  
Behavioural 

Statistical and 

deep 

Modelling future changes in the 

abatement efficacy of the 

mitigation options 
Technological 

Statistical and 

deep 

Applicability of the 

mitigation options (e.g. % 

of land area) 

Weather and soil types Biogeochemical Statistical 

Current and future type of 

farming systems (e.g. organic) 
Economic 

Statistical and 

deep 

Likely additional uptake of 

the mitigation options by 

farmers (e.g. 45% of land 

area) 

Current farm management 

practices  
Economic Statistical 

Variability in farmers’ behaviour  Behavioural Statistical  

Modelling farmers’ future 

behaviour 
Behavioural 

Statistical and 

deep 

Modelling future changes in the 

economy and farming 
Economic and 

political 
Statistical and 

deep 

Annualised net cost of the 

mitigation options (e.g. 

£1.40 /ha/year) 

Historic prices and other 

economic variables 
Economic Statistical 

Modelling future changes in 

prices and farming practices  
Economic, 

technological 
Statistical and 

deep 

Modelling future farm finances Economic 
Statistical and 

deep 

Choice of discount rate Economic Value 

 

A quantitative assessment of the statistical uncertainty of the cost-effectiveness of mitigation 

options are presented in the next two sections via a case study of the Scottish agricultural 

MACC. MACCs represent the marginal cost of emission reduction (i.e. the cost of each 

additional unit of abatement). The level of the economically optimal abatement is where the 

MACC intercepts the marginal damage cost curve, which measures the marginal cost of GHG 

emissions to the society (i.e. the cost arising from having each additional unit of GHG in the 

atmosphere). Uncertainty in the MACC and in the marginal damage cost curve result in 

uncertainty in the economic optimum (Figure 2). A MACC which is assessing alternative 
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technologies as mitigation options is likely to have additional uncertainties both in the 

abatement potential and cost of each option and also in the ranking of the mitigation options. 

Thus the uncertainty information becomes highly relevant when a MACC is used in the 

policy process where the aim is to stimulate the uptake of selected mitigation options. 

 

Figure 2. Effect of uncertainty on the optimal abatement level (based on Smith and Stern (2011)) 

 

Data and Methods 

This paper revisits data used to derive the GHG MACC developed for UK agriculture (Moran 

et al. 2011), restricting the analysis to Scottish soils. Moran et al. (2011) estimated the cost 

and abatement potential of options applicable in the UK agriculture, and calculated the ratio 

of these to attain the cost-effectiveness of the options (£ tCO2e
-1) for the years 2012, 2017 

and 2022, considering interactions between the options. Future predictions included changes 

in agricultural activities and prices, but not changes in the climate. Four uptake scenarios 

were modelled, reflecting different assumptions about the future policy environment: low 

feasible potential (LFP), central feasible potential (CFP), high feasible potential (HFP) and 

maximum technical potential (MTP), assuming uptake rates of 7-18%, 45%, 85-92% and 

100% respectively – see (Moran et al. 2008) for a detailed description. To reflect Scottish 

environmental circumstances and farming practices, the input data on abatement rates and 

applicability have been updated (Eory et al. 2013). In the current exercise we focused on the 

following options which relate to cropland (including temporary grasslands): 

 Using biological fixation to provide nitrogen inputs 

 Reducing N nitrogen fertiliser 

 Improving land drainage 

 Avoiding nitrogen application in excess 

 Using manure nitrogen to its full extent 

 Introducing of new species (including legumes) 

 Improving the timing of mineral nitrogen application 

 Improving the timing of slurry and poultry manure application 

 Using controlled release fertilisers 

 Using nitrification inhibitors 

Marginal abatement 

cost curve , 95% 

confidence interval

Marginal damage 

cost curve, 95% 

confidence interval

Abatement

M
a

rg
in

a
l c

o
s
t

Optimal abatement, 

95% confidence interval
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 Adopting systems less reliant on inputs 

 Adopting plant varieties with improved N-use efficiency 

 Separating slurry applications from fertiliser applications by several days 

 Using reduced tillage and no-till techniques 

 Using composts, straw-based manures in preference to slurry 

 

As information on the statistical uncertainty of the inputs was not available we conducted an 

uncertainty assessment rather than an uncertainty analysis - in other words, we assessed the 

impact of uncertainty on the results, rather than trying to quantify the level of uncertainty 

within the results (since the latter – an uncertainty analysis – would rely on existing 

quantitative information regarding the uncertainty of the inputs, commonly in the form of 

density functions, PDFs).  

Given the scarcity of quantitative knowledge regarding the level of input uncertainty, three 

uncertainty scenarios were created for each input variable ( “wide”, “medium” and “narrow” 

scenarios), which are respectively based on assuming that levels of uncertainty are high, 

medium or low. PDFs were assigned to the distribution of each of the input variables under 

each of these three scenarios: the nature of the uncertainty assessment means that the 

parameterisation of these PDFs is based on the authors’ judgment. Three different parametric 

models for assigning PDFs were considered in each case: the censored normal, truncated 

normal and triangular distributions. These three distributions were considered in order to 

investigate the effect of the shape of the PDF, and these specific distributions were chosen 

because they all allow natural limits of the values of variables (i.e. the fact that uptake rates 

must lie between 0 and 1) to be dealt with in a particular way. The three models each describe 

the PDF in terms of two parameters - the mode (the value associated with the highest 

probability) and the uncertainty range (the range that includes 95% of probability, or, for the 

triangular distribution, 100% of probability). The mode is taken to be the value of the each 

parameter that was originally used in the MACC, and the uncertainty range is specified 

separately for each variable and uncertainty scenario (Table 2) – for some variables (e.g. net 

cost) the uncertainty range is assumed to be a multiple of the mode, whilst for others (e.g. 

uptake) it is assumed to have a value that is unrelated to the mode. 

The three parametric distributions differ in terms of their shape: in the triangular distribution 

the probability is a linear function of distance from the mode, whilst the censored normal and 

truncated normal distribution both assume that the distribution of probabilities can be 

represented by a normal distribution between the natural limits of the variable: these two 

distributions differ solely in whether they assume that there is non-zero probability of 

obtaining values that lie exactly at the natural limits (the censored normal allows this, the 

truncated normal does not), and the two distributions are equivalent to each other – and 

equivalent to the usual normal distribution – for those variables that have no natural limits 

(e.g. cost, and, for some mitigation options, abatement rate). 

 
Table 2. Characteristics of the three PDFs assigned to the inputs of the MACC model  

Uncertainty 

source 
Description and unit 

Natural limits 

of values of 

the variable 

Uncertainty range 

Wide 

PDF 

Medium 

PDF 

Narrow 

PDF 

N2O GWP 
100 year GWP [kg CO2e (kg 

N2O)-1] 
(0, ) 

Mode * 

0.6 

Mode * 

0.4 
Mode * 0.2 

Activity 

levels 

Areas of land under different 

type of crops (four crop 

categories) [ha] 
(0, ) 

Mode * 

0.6 

Mode * 

0.4 
Mode * 0.2 
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Uncertainty 

source 
Description and unit 

Natural limits 

of values of 

the variable 

Uncertainty range 

Wide 

PDF 

Medium 

PDF 

Narrow 

PDF 

Applicability 

Biophysical feasibility of 

applying an option on a land 

category [-] 

(0, 1) 1.0 0.6 0.2 

Uptake 

Level of implementation of a 

option by farmers across 

Scotland, on land areas where 

the option is applicable [-] 

(0, 1) 1.0 0.6 0.2 

Interaction 

factors 

Factor assigned to each 

possible pairs of options, 

describing the synergies and 

trade-offs in the GHG 

effectiveness of the options [-] 

(0, ) 1.0 0.6 0.2 

Abatement 

rate 

GHG effectiveness of the 

options [t CO2e ha-1 year-1] 

(0, ) 
Mode * 4 Mode * 2 Mode 

(-, ) 

Net cost  

Difference between the gross 

margin of the farm with and 

without the option applied, 

calculated with a profit 

maximising farm model [£ ha-

1 year-1] 

(-, ) Mode * 4 Mode * 2 Mode  

 

Activity levels and the global warming potential of N2O were assumed to have the lowest 

uncertainty under all uncertainty scenarios - the former based on the fact that annual farming 

statistics in Scotland are estimated with high certainty, and the latter based on the confidence 

range of GWPs reported by the IPCC (2007). Applicability, uptake and interaction factor (IF) 

values were based on expert judgement in the original exercise, therefore higher uncertainty 

were assigned to them than to GWP and activity levels. Applicability and uptake can be of 

any value between 0 and 1, while IFs are mostly between 0 and 1, with some values – 

representing synergies, like between ‘Improving land drainage’ and ‘Using nitrification 

inhibitors’ – falling between 1 and 1.1. As their uncertainty is assumed not to be proportional 

to their value, their uncertainty was expressed in absolute terms. Net costs, which were 

outputs from a farm level financial model with no information on their uncertainty were 

assigned with relatively high uncertainties. Abatement rates, whose values were based on 

expert judgement, are similarly assigned fairly high levels of uncertainty. However, the 

abatement rates of seven mitigation options were assumed to be non-negative, whilst for the 

other eight mitigation options is was assumed that their value might become negative, i.e. 

with some probability they might be increasing, rather than reducing, GHG emissions. These 

eight options were: ‘Improving land drainage’, ‘Introduction new species (including 

legumes)’, ‘Improving the timing of mineral nitrogen application’, ‘Improving the timing of 

slurry and poultry manure application’, ‘Adopting plant varieties with improved N-use 

efficiency’, ‘Separating slurry applications from fertiliser applications by several days’, 

‘Using reduced tillage and no-till techniques’, ‘Using composts, straw-based manures in 

preference to slurry’. 

Statistical uncertainty of the inputs was propagated through the model via Monte Carlo 

analysis. The Monte Carlo analysis for each combination of year, uptake scenario, 

uncertainty scenario, parametric model and uncertainty source simply involved simulating 

1000 sets of input values using the relevant input PDFs, and then running each set of 

simulated inputs through the MACC calculations in order to produce a PDF for the MACC 
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outputs. The key outputs were the ranking of each measure and the economically optimal 

abatement potential. The latter corresponds to the cumulative abatement potential of all of the 

options of the MACC which have a cost-effectiveness value (CE) below the marginal damage 

cost curve, hereby approximated by the shadow price of carbon (SPC), with a value of £29 

(CO2e t)-1 (Price et al. 2007). Monte Carlo simulations were run for all 3 * 4 * 3 * 3 * 8 = 864 

combinations of year (2012, 2017, 2022), uptake scenario (LFP, CFP, HFP and MTP), 

uncertainty scenario (narrow, medium, wide), parametric model (censored normal, truncated 

normal, triangular) and uncertainty source (N2O GWP, activity level, applicability, uptake, 

interaction factors, abatement rate, net cost, or all seven sources combined). When running 

Monte Carlo simulations for all seven sources combined the uncertainties associated with the 

different sources were assumed to be independent, in the absence of any quantitative 

information on possible dependence between them. This can result in a potentially minor 

overestimation of the uncertainties of the outputs.  

 

Results 

 

Uncertainty of the economically optimal GHG abatement  

The level of economically optimal GHG abatement is one of the key quantities that 

summarises the MACC. We quantify uncertainty within this by looking at the ratio of the 

width of the 95% confidence interval to the mean. 

 

Figure 3. The ratio of the width of the 95% CI to the mean of the economically optimal GHG abatement for the 

different PDF shapes: truncated normal, censored normal and triangular, for the three uncertainty scenarios 

(narrow, medium and wide PDFs), all for the central feasible potential uptake scenario, in year 2022, for all 

uncertainty sources combined 

 

In Figure 3 we compare the levels of uncertainty associated with different uncertainty 

scenarios and parametric models for all seven uncertainty sources combined, for the uptake 

scenario CFP and year 2022. The uncertainty in the wide scenario is, unsurprisingly, higher 

than that in the medium scenario, and this is, in turn, higher than that in the narrow scenario. 

The censored normal produces higher estimates of uncertainty than the other two parametric 

models because it is the only model to allow a non-zero probability that the true value will be 

equal to the natural limit of the variable (e.g. 0 or 1, for uptake rate). The estimated levels of 
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uncertainty for the truncated normal and triangular model are more similar, but uncertainty is 

generally lowest for the triangular model. 

When propagating the uncertainties of all the inputs across the three uncertainty scenarios, 

four uptake scenarios and three years (truncated normal PDFs), the ratio of the 95% CI to the 

mean of the economically optimal GHG abatement ranged from 0.24 to 1.40, the lowest 

uncertainty existing for the high feasible potential in 2022 with narrow PDFs, and the highest 

uncertainty existing for the low feasible potential in 2012, with wide PDFs. In general, the 

uncertainty of this output metric decreases with the increasing level of uptake as we move 

from scenario LFP to scenario MTP, and also as the results are projected further in the future 

(Figure 4) – both findings can mainly be explained by the assumption of a linearly increasing 

level of uptake through time.  

 

  

 

 
a)  b) 

Figure 4. The ratio of the width of the 95% CI to the mean of the economically optimal GHG abatement 

(truncated normal distributions, for all uncertainty sources combined). a) Central feasible potential uptake 

scenario, for three different years and three different uncertainty scenario, b) Year 2022, for four different 

uptake scenario and three different uncertainty scenario 

 

The contribution of the uncertainty in each input category to the uncertainty of the 

economically optimal abatement was examined by propagating the uncertainty of one input 

category at a time, for all the three years, four uptake scenarios and three PDF assumptions – 

see an example on Figure 5. The uncertainty in abatement rate was the most important 

contributor in most of the cases, apart from the scenarios with low uptake rates – as is the 

case for the year 2012 and for the uptake scenario LFP – where the uncertainty of the uptake 

inputs is the most important driver. The uncertainty in the abatement rate is exacerbated by 

the interaction factors, which reduce (or increase) the abatement rate of the options without 

affecting the costs. 
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Figure 5. The ratio of the width of the 95% CI to the mean of the economically optimal GHG abatement 

(truncated normal distributions, 2022 central feasible potential) as propagating the uncertainty of individual 

groups of inputs and all the inputs. 
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Figure 6. The ratio of the width of the 95% CI to the mean of the economically optimal GHG abatement 

(truncated normal distributions, for all uncertainty sources combined), 2022, central feasible potential, wide 

PDFs 

 

The input uncertainty results in uncertainty in the ranking of the mitigation options due to the 

uncertainty in their cost-effectiveness and in the interaction factors. Figure 6 reveals that this 

uncertainty can be relatively high in the ranking of some options if wide PDFs are propagated 

through the model. For example the ranking of ‘Improving land drainage’ has a wide, 

trimodal distribution, and though being ranked as the third best option (out of nine options 

with a CE below the SPC) it still has an 8% uncertainty of its cost-effectiveness being higher 

than the shadow price of carbon. The options with cost-effectiveness closest to 0 are the least 

uncertain in terms of ranking, which can be partly explained by the PDFs assigned to the net 

costs and the abatement rate, both of which are proportional to the mode. However, in spite 

of the uncertainty in the individual ranking of the options, the set of options which are 

estimated to be cost-effective are relatively stable, having only a few options crossing the 

SPC threshold form either side. 

 

Discussion and conclusion 

The work presented in this paper made an attempt to systematically assess the uncertainties in 

the GHG abatement potential of agriculture by a case study that involved producing MACC 

analysis of crops and soil related mitigation options in Scotland. A qualitative analysis 

disentangled the different sources of uncertainties in the model, identifying statistical, deep 

and value uncertainties, and a quantitative uncertainty assessment examined the statistical 

uncertainties of the model.  
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assessment of agricultural GHG mitigation. These complex assessment exercises incorporate 

many aspects of uncertainty - from modelling the biophysical processes through to economic, 

political and behavioural aspects. Deep uncertainties are present in connection to every input 

variable, and information on the statistical uncertainties is often restricted. Part of the 

underlying data is easily accessible (like statistics on current activity levels), at least in 

countries where statistical data are commonly collected on agricultural activities, but even for 

those data uncertainty information is not commonly reported. There is a vast literature on the 

potential abatement achievable with the mitigation options, and more and more meta-analysis 

are available – however, the usually not very rigorous uncertainty reporting practices mean 

that uncertainty information on abatement rates is hardly available. MACCs, being an ex ante 

assessment, inputs from other modelling exercises are often used – where the uncertainty 

reporting is usually also scarce. This lack of information necessitated the use of an 

uncertainty assessment rather than an uncertainty analysis, but useful recommendations still 

can be drawn from such an exercise. 

The uncertainty in the economically optimal abatement becomes high in the medium and 

wide uncertainty scenarios, with the ratio of the 95% CI to the mean being 0.57-1.01 and 

0.98-1.4, respectively, while assuming low uncertainty in the inputs results in much lower 

uncertainty of this output metric (the ratio of the 95% CI to the mean is 0.24-0.68 across the 

scenarios). However, the ranking of the measures are relatively robust, especially in terms of 

which options have cost-effectiveness below the carbon price threshold. These results imply 

that although there is a high level of uncertainty regarding abatement potential estimates, we 

have higher certainty in which mitigation options should, at least from the perspective of 

cost-effectiveness, be implemented on farms. This finding corresponds to Gibbons et al. 

(Gibbons et al. 2006), who found that the total emissions from the farms are very uncertain, 

but the relative effects of mitigation options (expressed as a proportion of total farm 

emissions) had a lower degree of uncertainty.  

Looking at the contribution of uncertainties in the input variables to the uncertainty in 

economically optimal abatement potential, abatement rate and uptake rate are the most 

important input variables. At the same time these two, along with three more input variables 

(applicability rate, net costs and interaction factors) have the largest degree of input 

uncertainty. Inputs which both have high uncertainty and contribute highly to the output 

uncertainty are the key factors to be addressed if we are to reduce uncertainty in the outputs 

(Heijungs 1996) – in the case of our assessment these key factors are uptake rate and 

abatement rate (Figure 7).  
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Figure 7. Uncertainty assessment of the input variables 

 

There are opportunities to reduce the uncertainty in agricultural GHG mitigation, although 

when considering these opportunities the effort needed to reduce the uncertainties must be 

weighed against the benefits gained from more robust predictions. First of all, the data gaps 

in the uncertainties of the inputs are very large – both for the biophysical and the socio-

economic inputs. Improving scientific reporting practice to include quantified data about the 

statistical uncertainty in underlying research would be one of the most efficient ways to 

reduce uncertainty. Ongoing research on the biophysical aspects of the mitigation options is 

constantly providing new data on the abatement rate and at some extent about interaction 

factors – again, these results are most useful if accompanied by uncertainty estimates. Similar 

improvements are needed in the economic analyses to reduce uncertainties in cost estimates 

and also to improve the robustness of future changes in agriculture and land use. Uncertainty 

in uptake rate can be improved through a better understanding of behavioural processes and 

of the effects of policy instruments on farmers’ choices. Applicability rates are ultimately 

based on agronomic experts’ opinion – formal elicitation of uncertainty in this case is also 

possible, although resource intensive. Overall, it is likely that the uncertainties in biophysical 

and economic modelling will become more explicit in the future, reducing the extent of 

uncertainty in integrated modelling. However, improving our knowledge about the 

uncertainty in applicability rates and uptake rates requires even more effort. Nevertheless, 

emphasis should be put on supporting ongoing research about abatement rates and about 

farmers’ behaviour, as the key factors driving the uncertainty of the economically optimal 

abatement. 

MACCs, like other integrative assessment tools, accumulate uncertainties. Input data might 

include statistics, meta-analysis of field experiments, results from biophysical and financial 

models, results from expert elicitation exercises, or assumptions based on the judgment of the 

researchers. These inputs all have their underlying uncertainties, partly quantifiable statistical 

uncertainties, partly unquantifiable deep uncertainties. However, assessing the importance of 

these uncertainties – along with what extent to which they can be reduced – is an important 

step in informing the development of more robust policies. As a general guideline, all 
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economic assessment results should include the following points in order to make useful 

policy contributions (Kann and Weyant 2000; Smith and Stern 2011): 

 Probability-weighted values (‘implied probabilities’) of the outputs, 

 Information on where the model results provide reliable information (i.e. what are the 

boundaries of the model’s relevance), 

 Key inputs driving the uncertainty of the outputs and 

 The extent of unquantifiable uncertainty. 

 

As a recommendation for policy makers it can be concluded form the current case study that 

the uncertainty in the economically optimal GHG abatement rate on Scottish soils is high, 

and to reduce it the focus should be on research effort looking at the potential mitigation 

efficacy of the mitigation options and at the likeliness of farmers implementing these options 

in the future. Nevertheless, the ranking of the options is more robust, and the cost-efficiency 

of the mitigation options is not likely to cross the shadow price of carbon, which is the 

threshold for economic efficiency.  
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