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Given the procedures to be followed in this research, time series of price and yield realizations 

that are representative of what farmers might face in future years are needed to evaluate the 

feasibility of the proposed CISA. Reliable parametric estimates of future price and yield 

distributions are required to generate those realizations and sufficiently long historical price and 

yield time series are necessary in order to estimate those distributions. While long time series are 

available for most major commodity prices, multi-decade farm-level yield records are not as 

common. Fortunately, the University of Illinois Endowment Farms project has been collecting 

such records from 26 different “representative” corn producers during the last 50 years. 

Therefore, the “test-of-concept” analyses presented in this article are conducted for the specific 

case of corn producers in the State of Illinois. 

Price and Yield Distribution Models 

In addition to having access to suitable data, a key to obtaining realistic estimates of the price 

and yield distributions of interest is to use flexible probability density function (pdf) models that 

can accommodate a wide range of mean-variance-skewness-kurtosis combinations. One such 

density function is the Inverse Hyperbolic Sine (IHS), which was first utilized for yield modeling 

and simulation by Ramirez (1997). Subsequent applications of this model involving both yield 

and price distributions include Ramirez and Somarriba (2000), Ramirez, Misra and Field (2003), 

and Ramirez, McDonald and Carpio (2010). 
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 In addition to its flexibility, the IHS distribution model is appealing because each of its 

first four statistical moments can be independently controlled by a parameter or a parametric 

function of some exogenous variable(s). Specifically, for both the price and yield distributions, 

the mean is specified as a linear function of time (                ) while the variance, 

skewness and kurtosis are controlled by constant parameters (        , respectively). In the 

single variable case, the IHS density is then given by: 

(1)                
 
 

           
    where 

               
      

      
 

 , 

                   
            

                      
  , 

             
 

                     

                    
              

                        
  

 

          

 As Ramirez, Misra and Field (2003) point out, as           approach zero, this pdf 

becomes a normal density with mean        and variance   
 , which facilitates a test for 

whether or not prices and yields are normally distributed. In addition, if      but     , the 

density is kurtotic but symmetric, while a negative (positive)    induces negative (positive) 

skewness into the distribution. Specifically, the skewness (S) and kurtosis (K) measures of this 

pdf are given by: 

(2)       
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(3)                                                         
                            

    , where 

 

(4)             
              . 

 

In short, the IHS model allows for a wide range of skewness-kurtosis combinations 

(according to the two equations above which only depend on    and   ) while its mean and 

variance are determined by        and    only. In addition, Ramirez, Misra and Nelson 

(2003) show how the IHS density (equation 1) can be modified to allow for autocorrelation. 

Specifically, all is needed is to let      
 

                       where    is the     

row of a   by   transformation matrix   such that         and   is the error term correlation 

matrix (Judge et al. 1985). Using standard procedures, the concentrated log-likelihood function 

needed for estimating the parameters of this model can be derived from equation (1): 

(5)            
             

  
    

The above function is then maximized in order to obtain estimates for the parameters of a price 

distribution model with a time-varying mean, constant variance, skewness and kurtosis 

coefficients, and a suitable autocorrelation process. Maximum likelihood estimation is 

accomplished using the CML procedure of Gauss 9. The data utilized includes the real (inflation-

adjusted
2
) corn prices received by Illinois farmers during the last 70 years (USDA, National 

Agricultural Statistics Service 2011). As customary, the price series is first tested and confirmed 

to be stationary according to both the Dickey-Fuller and the Phillips-Peron tests. 

 The maximum-likelihood parameter estimates and related statistics for this first model 

are presented in table 1. First note that real prices have been decreasing over time at a rate of 

3.22 cents/year, putting them at a predicted average of $4.085/bushel in 2011. The estimate for 

the standard deviation of the price distribution stands at $0.618/bushel. A White test is conducted 
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to make sure that the model’s variance is constant, i.e. that price variability has not been 

changing over time. A test statistic of 3.37 does not allow for the rejection of the null hypothesis 

of homoscedasticity (p-value= 0.185). 

[Insert Table 1 about Here] 

 The maximum value of the concentrated log-likelihood function corresponding to the 

non-normal price model is -60.37 versus -64.92 for the analogous normal model where    and 

   are set to zero. As a result, the likelihood ratio test statistic (Ramirez, Misra and Field 2003) 

easily allows for rejection of the null hypothesis of normality (p-value=0.01). That is, since both 

   and    are positive, the distribution of corn prices received by farmers in the state of Illinois 

is in fact positively kurtotic and significantly right-skewed. Finally it is evident that, over time, 

prices follow a second order autoregressive process as both parameters in this process (   and    

in the transformation matrix  ) are highly significant while the Box-Pierce test cannot reject the 

null hypothesis that the transformed model residuals                 are independently 

distributed (p-value=0.978). As described in the next section, this model can be used to obtain 

draws from the current and future price distributions for the purposes of the CISA analyses. 

 Farm-level yield models are also estimated using the previously described procedures, 

assuming that there is no autocorrelation. The data in this case is obtained from the University of 

Illinois Endowment Farms project. Specifically, their ten farms with the largest sample sizes (40 

to 45 years) are selected for inclusion in the analyses. The maximum-likelihood parameter 

estimates and related statistics for these 10 yield distribution models are presented in table 2. 

[Insert Table 2 about Here] 
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 First note that all yields are increasing over time, with the rate of increase averaging 

about 1.4 bushels/acre per year. The predicted yields for 2011, presented in the first row of the 

table, average a little over 170 bushels/acre versus about 115 bushels/acre in the early 1970s. The 

standard deviation parameters of the yield distributions range from 18 to 30 bushels/acre and, as 

with prices, the White tests statistics (also reported in table 2) suggest that yield variability has 

generally remained constant over the last 40 years. The null hypothesis of yield normality is 

strongly rejected (p-value<0.025) in four cases, rejected (p-value<0.10) in two cases, and cannot 

be rejected in the remaining four. In contrast to prices, the prevailing negativity in the B5 

estimates suggests that the yield distributions tend to be left-skewed. Two of the non-rejection 

instances might be explained by the fact that, in both cases, observations were missing for the 

year 1983 which was characterized by extremely low yields in most other farms. In the other 

two, it appears that somehow farmers managed to avoid an extremely low yield event during the 

observation period, which is needed to trigger rejection.  

Price and Yield Simulation 

The process of simulating draws from an estimated IHS pdf is simplified by the fact that the IHS 

random variable is actually defined as a function of a normal (Ramirez 1997). Specifically, if Zt 

is a standard normal, then:  

(6)                                              , 

where   and   are as defined in equation (3) and, in reference to the models in the previous 

section,             ,       ,     , and     . Thus, once an IHS distribution 

model parameters have been estimated, random draws from the implied distribution can be easily 

obtained on the basis of standard normal draws. In addition, contemporaneously correlated draws 
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from several (S) IHS variables can be generated by simply correlating the (1 by S)    vectors 

used to generate them by the Cholesky decomposition of the desired (S by S) correlation matrix 

(Ramirez 1997). Finally, when the estimated IHS model involves autocorrelation, any T draws 

can be made to follow that process by multiplying a vector of IHS errors (             

                                        by the Cholesky decomposition of the 

appropriate correlation matrix           and then adding back the systematic component of 

the model (     ). 

 The above procedures are used in conjunction with the estimated model parameters to 

simulate random realizations of prices and yields to be experienced by   =10,000 hypothetical 

corn farms in the State of Illinois. It is assumed that the population of 10,000 farms is equally 

divided into 10 groups, each of which is characterized by one of the 10 yield distributions 

models detailed in table 3 (six non-normal and four normal). Forty-five future years of random 

yields are simulated for each farm assuming correlations of 0.65 across all yield distributions. In 

addition, 40 years of future state-wide price realizations are simulated assuming correlations of   

-0.45 with each of the 10,000 sets of yield draws. The 0.65 yield-yield correlation is selected on 

the basis of the average of the 45 sample correlation coefficients observed across the 10 farm-

level yield series underlying the analyses. The -0.45 yield-price correlation is based on the 

average of the 10 sample correlation coefficients observed between the 10 yield series and the 

state-wide price data during the period those yields were observed. 
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Table 1. Maximum-Likelihood Parameter Estimates and Related Statistics for the Non-

Normal Price Distribution Model 

  P.E. S.E.E T.V. P.V 

B1 6.3412 0.2144 29.5815 0.0000 

B2 -0.0322 0.0052 6.2110 0.0000 

B3 0.6179 0.0745 8.2948 0.0000 

B4 0.3229 NA* NA* 0.0106 

B5 20.0914 NA* NA* 0.0106 

B6 0.7605 0.1091 6.9694 0.0000 

B7 -0.3974 0.1228 3.2354 0.0010 
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Notes: P.E., S.E.E, T.V., and P.V. stand for parameter estimate, standard error estimate, t-value 

and p-value respectively. The significance (p-value) of the non-normality parameters (B4 and B5) 

is ascertained through a likelihood ratio test. B6 and B7 are the first- and second-order 

autoregressive parameters. 
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Table 2. Maximum-Likelihood Parameter Estimates of Yield Distribution Model 

 

  Farm 1 Farm 2 Farm 3 Farm 4 Farm 5 

 N NN N NN N NN N NN N NN 

Mean 182.39 193.58 162.14 161.47 179.00 183.10 174.77 173.44 163.47 163.47 

B1 100.69 92.60 85.39 84.98 93.38 89.89 88.06 89.57 99.78 99.78 

B2 1.542 1.905 1.448 1.443 1.616 1.759 1.636 1.583 1.202 1.201 

B3 20.926 21.236 18.005 20.931 22.695 23.477 18.327 25.820 20.301 20.301 

B4 0.000 0.914 0.000 0.808 0.000 0.722 0.000 1.258 0.000 0.000 

B5 0.000 -0.436 0.000 -0.683 0.000 -0.787 0.000 -0.041 0.000 0.000 

Skew 0.000 -2.405 0.000 -2.251 0.000 -1.808 0.000 -1.147 0.000 0.000 

Kurt 0.000 28.144 0.000 17.222 0.000 10.416 0.000 306.377 0.000 0.000 

White 2.318 2.227 3.741 3.801 2.635 2.456 2.228 2.409 4.831 4.831 

-2MV 392.48 375.48 379.24 377.05 390.53 381.57 372.15 363.85 398.67 398.67 

LRTS 

 

16.994 

 

2.191 

 

8.965 

 

8.297 

 

0.000 

  Farm 6 Farm 7 Farm 8 Farm 9 Farm 10 

 N NN N NN N NN N NN N NN 

Mean 168.15 181.43 165.97 169.30 186.07 188.71 165.95 171.69 136.04 140.88 

B1 114.63 103.19 89.29 86.20 121.66 118.99 128.67 123.16 84.49 80.77 

B2 1.010 1.474 1.447 1.568 1.215 1.315 0.704 0.916 0.973 1.134 

B3 25.492 27.087 27.705 29.943 21.424 23.122 24.481 26.618 25.454 25.717 

B4 0.000 0.418 0.000 0.735 0.000 0.518 0.000 0.725 0.001 0.273 

B5 0.000 -15.000 0.000 -0.775 0.000 -9.451 0.000 -0.723 0.000 -15.000 

Skew 0.000 -1.394 0.000 -1.876 0.000 -1.832 0.000 -1.717 0.000 -0.856 

Kurt 0.000 3.642 0.000 11.257 0.000 6.509 0.000 10.002 0.000 1.330 

White 4.846 4.166 2.579 2.252 4.539 4.558 1.494 1.642 3.290 3.493 

-2MV 391.21 385.31 398.21 392.61 358.68 348.59 369.35 365.73 409.71 405.69 

LRTS   5.907   5.598   10.089   3.621   4.024 

 

Notes: N and NN stand for normal and non-normal model, respectively. Skew and Kurt are the 

standard measures of kurtosis and skewness. White is the White test statistic which, under the 

null hypothesis of homoscedasticity, is distributed as a χ
2

(2) random variable. -2MV is minus two 

times the maximum value of the log likelihood function and LRTS is the resulting likelihood 

ratio test statistic which, under the null hypothesis of normality, is also distributed as a χ
2

(2) 

random variable.
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