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Preface by the Author

| taught AEC 620, Advanced Production Economics, every year between 1974, when | arrived as an
assistant professor at the University of Kentucky, to 2012, when | retired. The following publication is
one of the early sets of class notes | used in the course, dating from 1978. These notes are what evolved
into the hard-cover textbook “Agricultural Production Economics” Published by Macmillan in 1986. The
1986 text book evolved into the soft cover 2012 textbook “Agricultural Production Economics Second
edition”, available in bound paper volume on Amazon, at college bookstores, and as a free e-download
at http://ageconsearch.umn.edu It is fun to look at these 1978 notes to see how my thoughts in
production economics evolved over nearly 40 years.

If you found these notes on ageconsearch, do not miss looking at the 1978 publication Computer
Graphics - a Technique for the Analysis of Agricultural Production Functions ageconsearch handle
http://purl.umn.edu/159492 While you are at it, take a look at UK Staff Paper 303 titled An Animated
Instructional Module for Teaching Production Economics with the Aid of 3-D Graphics
ageconsearch handle http://purl.umn.edu/158806. While you are on staff paper 303 don’t miss
downloading and running the attached PowerPoint file.

If you are actually looking for the e-download of Agricultural Production Economics Second Edition go to
http://purl.umn.edu/158319 The book of color illustrations can be found at
http://purl.umn.edu/158320

Finally, make sure you download an e-copy of my new microeconomics text book Applied
Microeconomics: Consumption, Production and Markets at http://purl.umn.edu/158321

David L. Debertin
Lexington, KY
October, 2013
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A hierarchy of texts which deal with production economics.

1. Introductory

McConnell, Campbell R., Ecoromics, 5th Ed., Mcéféw [Hill,
- New York, -1972. -

Samuelson, Paul A., Economics, 9th Ed., McGraw Hill, New
York, 1973. S : ) Lo

2. Junior‘hevel

1. Traditiomal Approach - (Graphical}

Leftwich, Richard, The Prlce System and Resource Allocatlon,
Holt, R;nehart and Winston, New York 1966, .

Watson, D.Sg Price Theory and Its Uses, Houghton leflen,
Boston, 1968,

Doll, John P., V. James Rhodes and Jerry G. West, Economics
of Aorlcultural Production - Marketing and Pollcy, Richard
D, Irwin, 1968.

Ferguson; C.E., Microeconomic Theory, Richard D. Irwin,
Homewood, Illinois, 1966. (Simple derivations using calculus
in the footnotes.)

I1. Modern (Set Theory) Approach

Walsh, V., Introduction to Contemporary‘Microecoﬁomics,
McGraw Hlll 1969, (Good introduction to modern theory. The
preface to thls book 1is espec1ally'1nterest1ng readlng )

3. First Year Graduate School

I. Traditional Approach (Basic Calculus)

Henderson, James M., and Richard E. Quandt, Microeconomic Theory,

A Mathematical Approach, McGraw Hill, 1971.***(Intermediate steps
in derivations which are not 1ntu1t1ve1y obvious are often left to
the reader. At least initially, one spends a lot of time in the

appendix.)
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Carlson, Sune, A Study on the Pure Theory of Production,
Reprints of Economic Classics, Sentry Press, New York, 1965.

“(Requires only basic calculus - complete and thorough

notation often puts off the reader the 1lst time through.)

Allen, R.G.D., Mathematical Economics, McMillan, London,
1956. (An earlier treatise using basic calculus.)

Baumol, William J., Economic¢ Théory and Operations Analysis,
Prentice Hall, Englewood Cliffs, New Jersey, 1965, (Ties
together operations research techniques with economic theory
quite nicely. A popular book with those studying for prelims.’
At a lower level of mathematical sophistication .than H & Q.)

Heady, Earl 0., Economics of Agricultural Production and Resource

Use, Prentice Hall, Englewood Cliffs, N.J., 1952. (Heady's blue
"tome" is a classic text dealing with applications of .economics
to agricultural production. No calculus is required.. Extreme}y
wordy but covers everything.)

4, Second and Thlrd Year Graduate School

I.

IT.

Tradltlonal Approach (Advanced Calculus)

Samuelson, Paul Anthony, Foundations of Economic Analysis,
Atheneum, New York, 1970, (paperback), Harvard University
Press, 1947, (hardcover). (Classic treatise on applications
of advanced calculus to economics - not to be confused with
the introductory text. Written when Samuelson was a 22 year
0ld graduate student at Harvard. Difficult to reéad unless one
is extremely well grounded in advanced calculus and matrix
algebra. Read the prefaces.)

Ferguson, C.E., The Neoclassical Theory of Production and

‘Distribution Cambridge.?ublishing, London, 1969,

Frisch, Ragnar, Theory of Productlon Rand McNaily,_Chlcago,
1965.

Modern Approach (Set Theory)'

Quirk, James and Rubin Saposnik, Introduction to General
Equilibrium Theory and Welfare Economics, McGraw Hill, New
York, 1968. (This is at quite an advanced level, but is at
least a start into the modern approach at the graduate level.

. Applications to agriculture have yet to be explored.)



5~

CHAPTER I

AN INTRODUCT ION

"bedﬁétidﬁ‘ECOnémics
Production economics is concerned with the allocation of saarée‘féso&rces
amongst competing wants. It deals with a relationship
| Means + Ends

Means are physical resources, institutions and knowledge.
Ends are goals:. |

profit maximiiation

sales maximization

- ¢ost minimization

Maximization and minimization pervade the science of economics.

Mathematics - convenient notation for expressing concepts dealing with
fundamental principles of maximization or minimization.

Graphics - often easier to grasp concepts with graphs than with math.
Graphics and mathematics are closely tied together.

Lots of concepts can be expressed with math that can't be expressed with
graphs. We are limited with our graphs to 3 dimensions. With math, we
can work with 4 or -5 or 6 or n dimensional Euclidearn space. This becomes
of major importance when we start looking at the rather common situation
where an entrepréneur is using several different inputs to produce
different outputs--the typical farmer's situation.

Not many journal articles are being published that have graphical rather
than mathematical models. Mathematical models are concise--no place for
fuzzy reasoning. To be learned in the profession reqiires an understand-
ing of math. For many of you, this is your first exposure to mathematics
in economics. . ' ' : o "

Production economics is, of course, concerned with the producer. Some
have argued that cverythxng else in the profession is a subset of pro-
duction economics. This is probably true.

Consumption theory is strictly.analogous to production tﬁeqry.

i



Undergraduate course -- an indifference curve looks an awful lot
like an isoquant -- graphs are analogous.

The math is analogous too. This is convenient: once one has
grasped the concepts necessary to understand production theory,

consumption theory (price analysis) quite readily falls into
place (or, for that matter, vice versa).

Statics vs. Dynamics

This course:

- concerned with a static environment--time does not .
exist. '

. Comparative statics - compare events at 2 points in

time--no concern with the process of getting from one
~ point to another. (Figure 1). I

P

Fipure 1. Illustration of comparative’statics.

D, is observed in time period 1, D, in time period 2. We are not

concerned with the process of getting from Dy to'QZ-?the process

is dynamics. (Figure 1}.

. Economists are often accused of relying too lieavily on comparative
statics. - | R

Perfect vs. Imperfect Knowledge

?erfect knowledge -- Entrepreneur knows everything including prices on
inputs and outputs., We assume perfect knowledge - often not really the
case, This assumption is not really relaxed until you get to AEC 621.

T
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. CHAPTER 11
THE CONCEPT ‘OF A PRODUCTION FUNCTION .

1. Assume a (production) function

ftx)

m - y=
where y = an output [dependent'vdriable)_
X = an input (independent variable)

The function is nothing more than a rule for assigning to
every value of x a unigque (single) value of y.

y |
or

f_(X)‘

Figure 2. Figure 3.

X . X '
o

Figure 2 illustrates a function~-for every value of x, a
unique y value is assigned. ~Figure 3 is not a function.

Note that when x assumes a value we call x_, three possible
values yl,‘yz-and Yy are assigned to y. Figure 3 really

depicts _a correspondence rather than a function.

Our function in Figure 2 is continuous--that is, there are no
breaks in the function. Some functions are not continuous?,
We often assume that production functions are continuous and
twice differentiable. Most importantly, our function (1)
describes a relationship - a technical input-output relation-
ship. Our function (rule for assigning) states that for a
given amount of input x, a unigue amount of output y will be
produced. L

1Fof-exampie: Suppose the rule for assigning‘is
N y=3 ifx <4 ’
_ _ y =5 dif x> 4
A function is continuous if

f{xo] is defined lim f(x) exists, and lim f(x) = f£(x)

XX K%
o] . o]
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Note also the implicit assumption of technical efficiency.
There is only one possible amount of cutput y that can be

‘produced from a given amount of x. The modern therorests
would refer to this as being "on the frontier.,”

Suppose our production function describes corn response to
“nitrogen fertilizer (x is fertilizer, y is bushels of coxn
harvested).

Really, lots of other inputs are used to produce corn. It
is often convenient to hold. other inputs . constant. We might
write this as: . .

y = £ix, i Xys Xgs ey )

Where the slash denotes the word "g1ven', and (xz, Xgyee3Xy )
represents a vector of inputs that are held constant at some

predetermined value. (i.e., xg units of land, x; units- of 1abor)

Introduction to Maximization

'Suppose the technical relationship deqcrxhlng corn response to
nitrogen fertilizer" looks 11ke the relatlonsh1p dep1cted in
Figure 4. S o

RO
or e
Yy

, ( negative. -
slope - -

‘ . positive
} LXy - slope .

Xiy vei X
1 2’ »’'n

. Figure 4. Corn response to nitrogen fertilizer




Suppose also we wish to maximize the amount of corn to be
produced, forgetting for the moment that fertilizer costs
money. - It is obvious from Figure 4 that the maximum amount

of corn can be produced where the slope of the functlon equals
zero - that is:

where: . Ay

A (delta) is a mathematical operator donoting change

Since our function curves continuously (has continuously
curving tangents) the slope of the function is never equal
to zero over a finite change in x. No matter how small a
change we assume in X, our function will always be turnlng
sllghtly (Figure 5). :

-
”/,/’f" : f\\\ line whose slope
L ' is equal to - zero

Figure 5. Magnification of the Top of our
Production Function

If one assumes a change in x infinitely small, there will be
a point where the slope of the production function 1is exactlv equal
to zero.

We use the symbol %%— instead of %%, to represent
the slope of our production function when an infinitely small

change in x is assumed.

g%Q is, of course, the first derivative of the function y = f(x}.
The derivative %%—is.in fact the limit of %%-as Ax approaches

zero. We write this as
%%< = lim Ay .
Ax+0 - Ax

It is a necessary condition for maximization {of in this case,
corn production) that the first derivative of the production
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. 2 .-
function be equal to zero, In general, a necessary condition
for the maximization of any function is that the first derlvatlve
is equal to zero.

From undergraduate economics courées,.you probably remember that
the slope of the production function Ay is the marginal product
o Ax

. of x, the addition to output associated with each additional
unit of input. When marginal product is zero, total product is
maximized.

It should now come as no shock that the first derivative of the-
production functlon, 0T total product function is the marolnal
_ product functxon._ ‘ ‘

y = TP or TPP-
-%%—ﬂ MPP for a finite change in x
%%-m MPP or the marginal product1v1ty
P function when Ax+0 -
alsor’ . £'(x) = MPP of the TPP function £(x)
Suppbseﬁ‘ oy = £(x)

the specific form of f£(x) is -
X e T
' ‘ “TPP = —x" + 7x-

MPP = -2x + 7

N

Thls is a neécessary but not sufficient condition for output
maximization. We must also make certain that we are not
at a point of output minimization rather- than maximization.
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The Concept Of An Integral
As Applied To Production Economics

Sup?ose we wiéh.to éstimate the area under:thé mafginal Pﬁyéical
prod#ct function (curve) | |

| MPP = -Zx + 7
We could approximate tﬁis aréa'as suggested by the“shaded area iﬁ' 

Figure 6.

L MPP




.

An approximation of the area under the MPP function is:

(1) 5(1-0) + 3(2-1) + 1(3-2)
which is aﬁ equat ion represenfing the shaded area in Figure 6,
Alternately‘this can be written as:

@) 5+3+1-=58

or as:
. ' 3
3) 3 -
: oz (-2x, * 7)(Xi-- Xy 1)
i=1 3
and

X =‘1
X, =2
x3 = 5

Show that (3).is'equiva1ént to (2) and (1)..
Noté‘aiSo: | : o
,@) _Z‘@@% +7)&i~5x

S S
Lisl 1—lu‘3

.3 ‘ PRRTEE
. iilg"zxi + 7} Axi
An integral is equivalent to the above sum when Axi'ié-zero.
An integral is to a sum as 2 dérivatiﬁe is to'a finite change. In
other words;.i?f_

o 3 ’ T .
R A e

is _ : 3 :
(6)‘7 ..52 Exi +.7) dxi

The integrali[G} is exactly equal to the area under the MPP curve
(TPP). The sum (4) is an approximation of the integralufof finite

values of AX [y

LT
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Evaluating The Area Under The Integral

Suppose we want an estimate of TPP as x goes from 2 to 4. A
fundamental theorem for evaluating definite integrals applies”
to give us the formula:

- | x
f MPPdx = TPP at x =4

2 ‘ ~TPP at' x = 2

What theorem is being applied?

jf'-(x)dx = £(4) - £(2)

2

Since:

12

il

TPP at x =4 -16 + 28

- E

i

TPP at x 2 -4+ 14

-

10

Fundamental Truth

Assuming that TPP starts at the origin, the area under the MPP

curve is TPP.
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Exercise 1

Given the production function

Corn

what is the domain of the function?
what is the range of the function?

Ax.

= f(Nitrogen)

dx

. How does Ay differ from dy,

Chapter 1I

. - What i the difference between a function and a correspondence?

State the mean1ng of dy for a productlon functlon relatlng
: dx -

- corn response to nxtrogen fert111zer

leen the productlon functxon o

. y‘ °
What is MPP'

APP.

e

‘. -g

f(x)




~15-

6. Tf MPP is defined as

af
dx,

how would one go about finding TPP when x assumes a fixed
value x*? What fundamental integration theorem is used

to solve this,problem?

7. How does *fozdx differ from I x°Ax? a

8, What are the assumptions of pure competition?
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Increasing, Constant and

Diminishing (Margiﬁal) Returns

We have examined a case in which there is diminishing marglnal returns
to the variable input - @itrogen fertilizer ).

The law of diminishing returns - "As we add units of nitrogen fertilizer
to corn, after a point each additional unit of fertilizer produces less

and less additional output.'" This law 15, of course, fundamental to all
of production economics. :

¥y
. or
-f{x1  xz...xn)

. TPP.

: RS AT ST ne T I
g *

“MPP

C oY
dy
dx

Note that the function %%—has a negative slope.“Each_additional unit

“of x is producing less-and less additiomal y.
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2. Constant (marginal) returns to the variable input

Y
: . _or
Fxg | xy0ex)

'.mmgfwmmgwmwwwm¢wwgﬁw,JﬂMpp

i

i 8 where B is the slope of the TPP curve. :
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e,

Increasing (marginal) returns to the variable input
A R R T
. or . - ' . ' { or
A lXZ"'Xn)_ | - ff! f(xli XgeeeXp)
. ' ' . ' ,.f". : .

] ‘ = (3{1 ! X2 .Xn)
. *.u»*“‘,..maasﬂﬂ-"~"“'”“"'"f"BTf’i’ o
‘ dx
0. e s

. (xl xz...xn)

If the total product curve comes out of the origin the area under
the MPP function is exactly equal to total product

Th;s follows because B A L g - o
Do i 0 _ ' o
R 1 v = o - Co e
o &,}/W £ (x)dx.. f(x)x2x6 -f(x)x=o

What if the total product curve does rnot come out of the origin?
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Average Physical Product

APP or AP

APP = L
X

Amount of output produced per unit of input

Relationship Between APP and MPP

Wy o= £

. - y
(2 vy el X
e X
Gy Ly =Y
@) dy _ =, x dy
- dx R A dx
Hence: - L
MPP = APP + x dgpp _
e X
then, if
AAPP o g, MPP > APP
dx
dAPP. = 0 , MPP = APP
dx
dAFY g | MPP < APP
dx

Marginal Product vs. Marginal Productivity

The marginal productivity function is the derivative of the total produq%

function o B
| wpp = &Y o 4O
S ;”_dx __-dx
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and is a function representing the rate of change in total product.

Taking the differential of

yields

which is the marginal product dy

notation

where

y = £(x}
S df(x) dx
dy = dx

df (x) |

of the increment dx, or in finite

is a slope coefficient (not necessarily constant,

dx but not. at all unlike a regression coefficient)
representing the marginal productivity function.

. The Undergraduate Text Book Case

- marginal
returns

increasing//'

marginai‘;ﬂjf”“*
R /" o

returns

far LUV

 maximum APP“

\ ., MPP o

diminishing and
negative marginal
; returns

“TPP

- Btage- III

inflection point - a single

point of constant returns
also maximum MPP

e GE(RY 0 Maximum
MPP
Maximum

AFPP

D8y o f1(x)
dx
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Production Elasticities

Define:

e = an elasticity of production
- % Adn y
% A in x
Ay
. = by X
AX Ax Y
- ‘
dy
: 3
%%—. £ or dx
4 X
' ExerCisé
Show that
€ > 1  in stage 1
0<e < 1 in stage Il
g < ( in stage III
e = 0 at beginning of Stage III
Hint:

MPP
note that g = APP

¢ can also be interpreted as the "scale parameter.’

e > 1~ increasing returns to scale
¢ = 1 constant returns to scale

¢ < 1 diminishing returns to scale

Keep in mind that, in the textbook case ¢ is continually changing along
the production function. This is because the ratio of MPP to APP is
continually changing. R ' R '
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- For a multiplicative power production function such-as: -

y = AX g = O
or y = A x3 xg e=0a+8
: .3 .5 _
or y = A Xy Xy £ = ,8
. : iy [552) ﬂn
or y;Axl xz cer X
I’
e=1Iay
i=1

Merely sum the superscripts to calculate e.

Some characterlstlcs of textbook (graphlcal) productlon functlons

Can you think of " others?

)
@
(3)

@)
5)

(6)

”

These-same:characteristics stated . with mathematics.

(1)

)

MPP 1ncreaslng 1f1narg1na1 product is 1ncrea51ng
MPP is at the maximum at the 1nflect10n p01nt of the TPP curve
MPP CTOSses APP at APP maxmmum

Stage II starts where APP is max imum

MPP = 0 ‘when TPP is maximum

MPP < 0 when TPP is declining

Stage III.starts where TPP is-makimumlahd MpPP iszefd

§_§‘.> 0. . ‘implies increasing marginal product. . .~
et T S ST
4y R o .

—5 = 0 - at inflection point of TPP curve.

dx* R A

'Wh_at".' others exist?

EanaN




(3)

(4)

(5)

(6)

(7)

_24-

dx .

()
when di\x /_ 0, dy _ ¥
dx dx X

4Ly _

X = (O where Stage I1 starts

dx '
%%» = (¢ when f({x) is maximum
%%’ < 0 when f(x) is declining
the poiﬁt-where dy 0 marks the beginﬁiﬁg of Stage III
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Chapter 1Ll
Exercise 2

1. Suppose a production function
y = £(x)

has the derivatives

dy = dE
dx dx

&y _ de< o
ax® dx2
Sy = &
dx5 de < 0

Draw the TPP and MPP curve corresponding to these conditions.

2. Suppose a production function
y = 2X

Draw the TPP and MPP corresponding to this function.
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Suppose a production function

.7
y = x

Draw the TPP, MPP and APP corresponding to this function.

Suppose a production function
y = 15

Draw the TPP, MPP and:APP”cbrreéponding'to this fﬁnqtion._

Suppose a produétidn function

2.5
y = x

Draw the TPP, MPP and APP corresponding to this function}

Suppose a production function
. s
y =X
How much will y increase if x is initially at 16 units and
increased by 2 units? ' ' ‘

is then




Suppose that:

1=
where:
X =
v =
=
$

W27 -

CHAPTER III

PROFIT MAXIMIZATION:
THE SINGLE VARIABLE CASE

pry - Vex

output
price of oﬁtput

input

- price of input

profit

TPP-P
y'p

wish tq maximize the
vertiical distance

here

Profit ()
function
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We wish to find 2 point on profit function where slope'equals Zero.

0=oypy - vx
& Pax-veo
d
PV
p  MPP

MVP = MRC = price of input

The first order condition for a max1mum15 a necessary but not sufficient
condition.

How do we know we have not found a point where profits dre minimized rather
than maximized?

The second order condition is the second derivative test for a maximum.

(dn P
dx < 0
dx T 1

for a minimum

)
d \dx > 0
dx .
(fyz) "__2
da\ dx 471
dx dxz

First order condition is a necessary condltlon - without the condition
the event will never occur.

Second order condition is a sufficient condition - thh the condition
insures that the event will occur,
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A Picture:
$
TPP<P (TVP)
: e e
$ : oo _ K/,MJwﬂ,,/f profit maximization
o { { ‘

‘ . _#‘y’m’»‘ : . _' . | .
o ' “~<APP*P (AVP)
N N . x -

™, C
L e, :
. MPP-P
" Again: '
VMP = MRC

Note that:

TRC
MRC

!

Total Resource Cost = vx

It

Marginai Resource Cost = v
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L.ocal vs. Global Maxima

A problem thatxoccurs with i1l behaved functions.

Suppose a functibn:

,H
= ¢(x)
%5 X1 X
" two Local Maxima
one at x =_xo o
. one at X z'xi
when x = X ”"‘ “‘Local but not global
X = xl" ':'Local'andtglohal_ﬁ

We assume our profit, cost, and productivity functions are well behaved
(i.e., have only .one 0pt1ma} which is global and go on. Nothing really
sacred about our well behaved functions.

‘Note also, the 1mportance of the notion that are proflt functlon ‘has
contlnuously turnlng tangents ' : . S
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This ensures a unique solution to our profit maximization problem.

Otherwise:

T is maximized at x o at Xl’ or anywhere g
"1n between. '

A more complex case assuming declining product prices. A simple
application of the chain rule.

= ¢ (y)
$pF < 0

(i.e., declining product prices thh respect
to output) :

CT= )y -vx
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Note that:

()
£f(x)

o
o0

A classic chain rule problem. Maximizing w.r.t. X

dn o d¢ dy dy oy
x Y4y & TP =V

'ég—can be (crudely) interpreted as the change in product price

associated with a change in the output level,

dy  wpp

S &
.if . | 'v'jz M?C
Flouc |
L g

A Numerical Example:

Sﬁpﬁéseﬂthe production function is given by;.

(1) y-= ax;7_ f,'-¥
what i§"
(a)"ﬁPP?
(b) I APP?
(c)* &, the elasticity of production

0 if p =43

v. = §1

a= 1

{(d) What value of x will maximize profits? -

(e)V‘wa much y will be produced?
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Chapter 111

fxercise 3

1. What is the verbal interpretation of the phrase

2? Why is the above équation termed a necess&ry'but_not-sufficient
condition?. . AR ,' e

3. What is meant by the term second order condition?

4, How does a'locdlfmaximum‘differ from a global maximum? . - -
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Under what conditions

(1) would it be 1mp0551ble to find a finite solution to
the problem of max1m121ng profits.
{2) would it be p0551ble to find several (perhaps an infinite
number) of solutions to the problem of maximizing profits.
. Suppose _
(1) a production function =
SRRV
Y= X

price éf_outpqt?  |
. p= p(¥)
.price offiﬁput-m
Maximize pfofiéS  |

What two’ fundamental rules of dlfferentatlon are used to solve the
above problem?:{ﬂ i : - ‘ :

R
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Introduction to Lagrangian Multipliers

Consider the following problem:
We wish to maximize
TR = py

where TR = total'revenue

subject to the constraint (limitation) that!
€% = vx

where
co

a constant equal to the total amount we
wish to spend in producing y,.

Introduce the concept of a Lagrangian Multiplier:

The Lagrangian Multipler A is some as yet undetermined number
whose usefulness will become apparent. Actually, A is a friend you've
probably met before. :

We have two unknowns, A and x. p, v, and c° are known constants
(parameters). vy is known for once x is known.for we specify a
unique rule for assigning unique values [y = £(x)].

Formulate the Lagrangian expression

_(1) L=py + A (Cc® - vx = 0)

Maximizing 1, with respect to x and X

f.o.c.

() aL dy
o p &Y =0 -
&PV 0

3 dL = CO - yx =0
da

(2) and (3) are the two equations used in sélving for our unknowns ) and Xx.
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@) p =

; ' ‘price of
price of : input
. product ‘

A -has a very special meaning-it 1is the ”implicié worth" of
an extra dollar spent in the purchase of Xx.

We are asking the question "Suppose I had an additional dollar to spend
on x, how much more could I make with that dollar ? In linear programming,
A is readily interpreted as the shadow price - the implicit worth of an
extra unit of any resource. This is very similar to the concept of
opportunity cost. = '

| Note that, by (4)'Tff

ody T
P& o= x=  MPRR = VMR o=,

TV Ly Y
if A =1, VMP = v = MRC

O L TP e
1f C were unllmltgd. Vg? =i, or A =1, that is

the last dollar spent on x would contribute exactly 1 dollar to total
revenue, and we would of course be at the point where yMp = v = MRC.

If, in fact, c® is an active constraint, that is t® 1imits the amount .
of x that can be purchased A will normally assume a value > 1, that is,
the contribution of an additional dollar spent on x to total revenue
would be greater than $1. We would be at some point to the left of where
MRC = VMP  DProfits could be increased by further increasing purchases
of x, but only by spending more, and ¢° could no longer bhe held constant.

Consequently, profit maximization without constraints may very well

make use of greater amounts of input x than if a total outlay constraint
were inposed. -

Note also that is c® were a value large enough so tha;.x could be

used to beyond the point where WP _ 1 then, the constraint is not
effective. . - : R . S
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' Chapter III

Exercise 4

1. What is the key difference between the solutlon to the proflt
maximization problem when

I =py - vx

vVersus

= py = Ac® - vx).

2. Under what cond1t10ns would - the solutions to the above pIOflt S
maxzmlzatlon ?roblems be identical? :

3. Suppose a utility function is given by
ou = ou(z)
the Budget constfaint is
:..'PZ

What is the marginal utility of money?
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SIMPLE MATHEMATICS OF
TEXTBOOK COST FUNCTIONS

The textbook cost functions are as follows:

§

e PR
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Average Fixed Cost
The equation:

Trc”
y

AFC =
(where: TFC* = Total fixed costs assuming a cohstant.v31Qe)

deflnes a rectangular hyperbola, the p051t10n in relatlon to the
origin is dependent on the value of TFC. that is assumed

daFC | ~TRCY

dy 2
Y. y

Note that <0

AFC is a decreasing functioﬁ_wiﬁh fespéét‘to;outpﬁtﬁf'

a®aRC - 2TEC
dy .3
v y

AFC is decrea51ng at a decreasing rate, (The rate ‘of change of the slope
is positive.) : :

Further note that a whole family of AFC. curves can be drawn by
merely a551gn1ng alternative values of TFC*

AFC {4

L 5 \ . TFC =

e AFCo
AFC

W-”: o AF(:‘2




wd ()

Note also that the rectangle under the AFC curve is exactly equal
to TFC. This 1s true because:

arc = L&
and _
y * AFC = TFC

Marginal Cost

As might,be ex?écted:

oo dTC
ooy
Or‘-' _
Y1 o
O - ; . '
‘ ¥y

1  W5iMm?ch N

Marglnal cost assumes a mxnlmum value where the inflexion point
‘on the total cost funct1on occurs This is a 51ngle p01nt of
constant costs.:

Average Variable Cost. AVC assumes a minimum value at the point
where the ratio of TVC to'y (TVC‘)ls minimum, Thls is equivalent

to saying that AVC is minimum when a line p3531ng out of the origin
and 1ntersect1ng TVC assumes a minimum slope.

Average Total Cost. Average Total Cost assumes a minimum value at
the point where the ratio of 1C to y (}EZ) is minimum; This is

equivalent to saying that AC is minimum when a line passing out of
the orlgln and 1ntersect1ng TC assumes a mxnlmum slope
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Assuming TFC > 0, minimum AC is to the right of minimum AVC.

Marginal cost cuts AVC and AC at the respective minimum points.
This should come as no shock, since a line passing ocut of the
origin and intersecting TVC or TC at the respective minimum
points is tangent to the TVC or TC curve and thus, also
represents the slope {(derivative) of the TC. and TVC cCurves

at the minimum points. '

Simple Profit Maximization

From'the'dutput'Side

' Define:
‘T'= TR - TC
to maximize T

a1 | ‘aTR . dTC

¢ mmare T m——— o b T35

Mathematical Economics isn't as difficult as it seems!
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CHAPTER 1V
Exercise 5
1. What does the shape of -the Total Cost Function as shown in
Figure 1 imply about the shape of the productlon function
that underliies it? :
, TC
$

y -

. Pigure 1. . . .

2. Why is it true that there is only a single pomt (output level)
where MC AC for the "textbook” productlon functlon‘?
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3. Do average fixed costs ever reach zero?

4, Why is it true that MC assumes its minimum value at the inflexion
point of the TC curve? : :

5. What happens to TC, TVC, AC, AVC and AFC in Stage III of pfoduction?
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6. ' Suppose:

T = )

where:
TC = total cost
Ly = output
find:
- MC
AC

‘Show that MC';gts_AC at the minimum point of AC.
*Hint: Use the rule for differentiating fractions.

Exercise:

7. Show that:

MC lies below AC until AC reaches a minimun.
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CHAPTER V

PRODUCTION WITH TWO
- INPUTS AND A SINGLE OUTPUT

Consider a function

n-

(1} v 5 g oo xn)

f(xi, X X
or, simply
(2 ¥y = £(xy, x,)

Often the function is often also seen in its implicit form

(3) 0= g(xll, }.(.2’ ¥)
Suppose y is fixed at v
Then:.

RONPAE f(xiﬁ-xzy

There are an infinite number of combinations of Xq and Xy
satisfy equation (4)}. The locus of these points is célled an isoquant

{iso meaning equal; ‘quant is short for guantity).

which will

"Isoquants"
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The slope OfianfiSOQUant
sz , dx2
oY X is often referred to as the
1 *1 marginal rate of substitution or
rate of technical substitution,

MRS or RTS, and is a measure of how well one input substitutes for
another. Note that if isoquants are drawn as depicted on preceding
page, the RTS or slope is changing constantly along each curve

Partial differentiation, total differentials'and total derivatives.

We use the 3 symbol to 1nd1cate derlvatlves with respect to one
variable, holding the second variable constant S

i.e.,- {Ex: N
- ( ax_J *2

A total differential can be crudely interpreted as the total change in
a variable. For small changes in Xq and x Xy, @ total differential quite

1

‘constanf};

]

constant

closely approximates the total change.--Again. the total dlfferentlal
really represents the change at a p01nt.Start1ng w1th our orlglnal
function ‘ z .

y = f(xl? xz).

We denote total change in finite increments as:

u Bf CAx

by = ‘} { Bx 2
e change
in %

the change in output with respect to

a change ‘in the input Xy a slope.
coefficient or parameter, not necessarily
constant, but may vary along the functlon,

or, in less crude (llmlt) notat1on, the total: dlfferentlal is -

_3f 'af
dy = 5§i dxl .+ sz dxz_,s~f“

T
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More importantly, %§~ is the marginal product of Xy holding X,

‘constant. Similarly} 3f is the marginal product of X holding

sz

x1 constant.

Henderson and Quandt use the notation:

- 9
f. to denote ,—£
1 ax
1
f. to denote af
2 e
sz

Along an isoquant, y is constant.  Hence, along an isoquant, Aq and
dq must also be constant. Hence, along an isoquant.

‘ Lo O af
(5) dy = 0 ~ ;8X dx1 o dx2
. A 2
- rearranging (5)
of
ax
_ 1 - dxz
%% dxl
2
The slope of the isoquant, the RTS or MRS is exactly equal to the
negative ratio of the marginal productivities of each input. -~ This
is a fundamental relationship -- one to which we will be returning

again and again.

Some sample'iSdQuant patterns:

Case I . 2

dxz <0, d X, 5o
dxi d XIZ
N |
slope of.igdquant rate of change of

slope
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Implies:

slope as negative and rate of change of slope is positive -- the classic
case. o o : - ‘

Case II', o )

Impliés:

N
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Case III.

Isdquants are cofnicave to the origin,

Implies:
)
t SR
' Cx
Case IV,

dx dzx
2 2

w— > 0 > 0

dx 2
1 dx1

Isoquants Positive sloped, convex to SE.

|
|
i




Case V.
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dxz ‘ dzx‘

- —= > 0 and ‘

- odx _ dZ
b'd

, o0
! 1

Isoquants Positive sloped, concave to SE.

Case VI.

-

No factdflsubstituteability{ ;:ﬁf
- P

D oy okt QM MG

T I g

X T

dkz
- not defined
dx1 - _

B—
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The textbook factor-factor model
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Definitions:

(a) Isoggant - a line of constant product - usually drawn
. - convex to the origin and with continuously

turning tangents, Neither condition is necessary.

{b) Ridge Line - lines connecting points of zero or infinite
‘ slope on isoquants.

i.e., dx2 =0 or d}_(z - 4w
| | dxl‘ - dxl
~alternately -
o dx, dax,
e or-——l—= 0
dx . dx

2 2
Note that the area internal to the ridge line is an area which lies
in Stage II for both Xy and X, .(WHY?) The area NE of the right ridge
line lies 1n_Stage 111 for Xy and Stage I for X, . (WHY?) The area to
the NW of the 1eft ridge line lies in Stage'III for x2 and Stage 1
for xl.(WHY?) : Rldge 11nes cross each other at the p01nt of ‘Mmax imum
total product.: (WHY?) ' ‘ ' ' '

Exercise:
Suppose a ﬁrodUCtion function of the form (Cobb Douglas)
. . 0 19 R ‘

X

y = Ay Xy

where do the ridge lines lie?
Isocline - any line connectlng p01nts on 1soquant5 of equal slope.
Connects p01nts where:

Where k is some constant.

(c) Pseudo-Scale Line - A specialized isocline connectlng points
R - on isogquants where ‘

P oL v
Bx1 1
YMP =
Xy vy

for alternative values of X,
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p?.f., 2'\]’
ax2 2
VMPX = v, for alternative values of x
2

where:

v, and v, are the respective prices of the

inputs Xy and Xps P = the price of ocutput.
Pseudo scale lines enclosethe area of rational production.
Pseudo scaleiliﬁes converge at the point of maximum profit.'

Note that the point where the pseudo scale 1lines converge.

p 2 !4
Bx1 . axz
M1 Vo
VMP VMP
Xq - Xy
Vi \
Further:
VMP VMP. VMP
o= %2 o= no=1
v1 v2 vn

The marglnal value product of each factor divided by the respective
factor prices are equal for all inputs, and in the unconstrained
case, equal to 1.

If production is constrained by the avallablllty of dollars for
the pruchase of inputs,

1
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Note that if-" 

af

p ax, 2

if v, = 1 ( a unit price ) then dx

it
<

7
.o
i N
it
=

further:

i py o, 'l

, 2

3

S T
Vl'

Expan51on path

Suppose a constralnt of the- formi.'

1) C°'= g(xl, Xp5 Vys V)

More specifically, suppose the constralnt to be represented by an

1soout1ay CUIVG or isocost curve -

@ X,

= VXt Y2,2l S
where
CO.# a constant equal to some arbltlary'outlay
for X and X :
vy and v, = pr1ces_of Xy and.szl::_‘H

1.7 72
" Note that:

Our constréint function is really a linear combination.

1 2
- contrlbution of X

v, and v, are prlces which act as welghts on the relatlve"

1 ané.xz to totalkoutlay

p—
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Note that along the horizontal axis, Xy = Co/vl , and along the
vertical axis X, = Co/v2 . (WHY?) .

Taking the total differential of (2) with respect to Xy and x, (assume

2

vy and Vg to be constant parameters) yields (3) ac® = vldx1 + vzdxz,

but dc® = 0 since c® is a constant.

Hence:
0= v.ldx1 + vzdxz
or
:.‘le-'--z .(-i.f_z—
V2 dx,

Further, in finite increments

<

S

sz
A‘Xl

The slope of our constraint function is equal to the negative inverse ratio
of input prices. Note that the distance of the constraint function
from the origin (x =0, X, =0} on the graph is determined by the value

of C°. The slope is alwaxs equal to the c_onstant( 1) a ratio of weights.

A line connecting all points on a set of isoquants where the slope

of the isoquants are equal to(fljfs known as an Expansion Path.

\

An Expansion Path is usually shown in intermediate level texts to
be a straight line passing through the origin. Actually, expansion

path need not be a straight line. Homothetic production functions
generate linear expansion paths. :
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Introduction to Maximization:
the two inpit cdse

Suppose a function
(1) ¥y = £xy, %)

(1) reaches an unconstrained maximum (or perhaps minimum} at the
p01nt where the following first order conditions (f.o. c. ) are met

le axl
ay g.'gf..: 0
sz _éxz

at the p01nt where the marginal-prodﬁdt'function'eqﬁals'zero for
both inputs '

For a maximum, second order condxtlons (suff1c1ent condltlons) are

met 1f (1) vy
R e <0
and = - e, I
RN I - SR & SUREE & SN
2%, 2 ax,° XXy - XXy

1 2

The quadratic form is negatlve definite, Alternately, in matrix

notation
3% 3%
3X12 Bxlxz
: > 0
3¢ 3% B
szxl szz;
and .32f
2 < 0
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The principle minors of the relevant Hessian determinant must alternate
in sign for a maximum,Study H & Q, pp. 401-402,

These conditions ensure that the production function is concave. The
strict ineqgualities hold if the function has continuously turning tangents.

Isoquants derived from a strictly concave function are convex to the
origin. :

‘Two production functions are needed to derive sets of isoquants.
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H - .

TPP

‘ , L
We can do the 'same thing for x by holdlng Xy fixed. Hence _

two productlon functlons underlle every set of 1soquants
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Profit maximization, the 2 input case.

Suppose a production function:

y = £(x4, X,)
A cost function:
C=glxy, x5 \(1, v,)

A profit”function:

=
It

py - C

=
H

pf{xls- Xz) - g(xl,'xzf; Vl'-’ Vz)

Maximum profits ( or perhaps minimum profits) unconstrained:

ol af ag
.--.-..:p——-—-‘.—-‘ —-0
Bxl le Bxl
) 3f 8g
S T Pox. " 3e =0
sz ﬁ331  sz
or
of _ 28
Bxl ~ax1
of _ 3g
p—-—-—-:
axz sz
of o .
Fral marginal product function for the ith input.
1 ' :
%%— = change in total outlay with respect to a change in
i the use of the ith input.

The Marginal Resource Cost Function.

‘Suppose{fhé'specific form of g to be the linear-cdﬁbinatiog

- g(xl, xz) = C = ViXy F VX,
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where
vy = the respective input prices,
then

28 2V, o= MRC = price of the input.

Further

and

' RTS = inverse input price ratio

defines a point where pseudo scale lines 1ntersect the p01nt of
. maximum proflt

Langrangian Multipliers - Constrained Output Maximization

Suppose C to be constrained at some value Cq; i,é;;_hb'moref
than $C° can be spent on X, and x,. -

Output maximization subject to a cost constraint. Formulate
the Lagranglan eXpression ' -

‘  i o -
L= f(xl, xz) - A(C, - VX - VX, )

1*1 7 Vot
£.0.c L
%ﬁ;- = %g;- - -Atvl = 0
g%;- =. g;;— - X_vz = 0
_3_% | = v vy =0
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Furtherf‘

Hences: .

- of

le = 1

R S
sz | 2

RTS = inverse price ratio

for ‘any c=c%"

Refers to point of tangency between isooutlay curVe and
- isoquant. : Represents maximum profit for any arbitrary
outlay, € B Rt R SR

" Note also:

af  _ of

% A A
1 2

Y1 Y2

A is the implicit value of the relaxation of the cost
constraint by 1 dollar.
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e

7 Expansion

Path

o
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Least Cost Combination of Inputs

Note that the f.o.c. for the least cost combination of inputs
is defined as the condition where

peMPP peMPP
XI XZ
Vl v

2

This. condition deflnes an infinity of pelnts along the expanblon
path. Notice that: : o

"for évery value of C that one assumes, there
corresponds a unique least cost combination,
there is in fact an infinitity of points of
least cost combination. There is,. however,
only one global point of profit maximization
where A assumes a value of: 1 and: the. pseudo
scale llnes 1ntersect.

" ’s,o0.¢. for maximum

o’f 2%k e
- 2 3x1x2 1
1 o=
228 9%F - v >0
90X K- 2 z
2 1  8x2
-vl &vz 0
denote
2
37 f :
as f..
CAXLXL . Tdj
1] :
£ 0 fp M
£ £ Y > 0
f—vl v, 0
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or

11t Tt O E)Gvy) (Fvy)
V() vy
—[("Vl) (—Vl)(fzz) + fll(”vz}("vz)
- (£),) (£,,) (0)]
oy
f12V2“1 + £,v1v,
2 2
= vy - £y,
but: _ -
o f12 =%y Why?
‘then: C |
| B S S 2, R
22Y1 T MV 12V2V1
but: _
8 .
. Vi =1
i
“Hences: '-' : 2 : 2
S L T T L B UL S G
2 2 X3
_Furfhef;?; N o, .
| ' 2f12f1f2 - £0fy - T >0

Séé H and Q, equation 2}10;and‘2-15, pp. 15 and 19.

This is a sufficiént condition for a global maximum. By advanced methods,
it has been proved that the function f(x,, x,) (or, for that matter
f(xl, Koy weeyXy ) cannot have more than One constrained maximum over an

interval if the above determinantal condition holds: over the interval,
See H and Q, pg 4@6

T
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Further Remarks

 #**These first and second order conditions hold if and only.

if values of X4 and X, are held at strictly positive

levels. In other words we do not allow the situation
where

A .
S

Derivatives are defined only on open sets.

Need Kukn - Tucker conditions to show what is pictured above
mathematically. ' '

Generalization to m variables

‘0f course:

f.o.e.

h
[H

A Vj for all i, j =1, ... n,
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Hence:

MPP MPP MPP
: Xy X ‘

S T T Ty

Further:
S,0.C.
n 12. SRR In Vp o

21 fo oo i V2
(-1 ' :

Where n is the number of inputs.

For a makimum_thiskis th@,négative definite quadratic form.
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AG ECON 620 Chapter V

Exercise ©

‘1. . Suppose a production function is given by:

.3 .6
X

y = AXg X

What is the total differential dy?.

2. Calculate the. RTS for the above productlon functlon 1f y
some constant y S L

3. Draw the isoquants that would be associated with the function in (1).
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Find the location of the tidge lines for 1soquants generated by the
production fUnctlon {1).

What is implied by the condition?

What is implied by the condition?

A "pseudo scale Ilne“ is deflned as a spec1al1zed 1soc11ne o
connectlng p01nts on isoquants where : =

Bf-

P.'g’g{l

K
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and - of y
P sz T2

Why is it true that pseudo scale lines cross at the point where
A-=1 and this is the unconstrained point of maximum profit? -

. Under what conditions is it possible to write the_implicit
function s

| g(Y: x'l': XZ) =0
in the form:

y : f(xl, Xz)

Hint: Check a calculus book on the implicit function theorem.
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Flasticities of Substitution

The elasticity of substitution is defined as a measure of the
rate at which substitution between two inputs takes place.--
Proportionate rate of change in the input ratio divided by the
proportionate rate of change in the RTS. More formally:

Iy 'd(f'xz\

ax ]

1 Xy J

v ;

Ix o 3V
o - 2 4w

X, 1

= 3 :
x o ]
1 8x2 7

Note the differehce between the formula for the elasticity of
substitution and the elasticity of production.

For a production function with convex isoquants, both the slope
of the indifference. curve, sz and the ratio of total use of the
Axl

2 inputs kzj)iSdeclining as x

1 is substituted on x

*1

The elasticity of substitution tells us whether or nbt‘these'ratios
are declining proportionately. So long as 3y (MPPljiand N
. ax .
dy (MPPZJIQre-positive, the elasticity of substitution is always
Ix ' ‘ :
2

positive, See pf0of, H and Q, pg. 62.




i

Suppose:
y = Axlo‘l xzuz
then oy o,-1 o
axl = ul Ax1 1 X, 2
Bz - a G,~1
pw al Axl 1 X, 2
2
ay
3y o, X
x 2 1
2
So: X
o = i f‘% d(%)
0y Xy 1
X
2 d(i;_ %2\
1 az xl j
but :
o X o X
¢ X % *1
so:
VRN
a2 af 23
% %1 xl')
X2 %1 d(l)
X % Xy

All Cobb Douglas type functions have constant unitary elasticities
of substitution even if n

Eoay £ 1.

=1
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A Diagramatic Illustration of the

Concept of an Elasticity of Substitution

gy

i s e oA o 4t A ey A e

D

The'élasticity'of substitut ion isxequal'ﬁoé,‘.

OF 0B

- DA OB
TOH T 0G
oc - 0D

: Overtthe‘finite_raﬁge from Pi
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3.

Under what condiflons would the purchase of %y &nd X
tenant be tbe same as if the tenant owned the }and? g

7%

Exercise 7

Suppose that a temant receives only r percent of the revenue from
the sale of crops on a farm being rented (0<r<100). How, in the
eyes of the tenant, are the first order conditions for profit
maximization altercd with respect to the purchase of variable
1nputs Xy and Xy (i.e., fertilizer and seed)?

Suppose that the temant and landlord agree to $hare expenses--
the tenant to pay s percent of the cost of seed and fertilizer,
the landlord to pay 100-s percent. How are first order conditions

for profit maximization altered?

2 by the
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Constrained Cost Minimization Subject to an OQutput Constraint.

Suppose we wish to minimize our (linear combination} cost function
subject to the constraint that ' '

y? = £(xyx,)

where output y .is fixed at some arbitrary level yQ_ Form the lagrangian:

_ . 0__ . .o
L = ViXy VX, 4 viy f(xl,_xz)]

S T
CL IR -
axz 2 3x2
0L 0 e iy i
E A R R
" RTS = fflu =y
=1
R
5.0.¢
- liflz - ufzz —fz < 0
- £ - £, 0

Negative,'oppbsite of that for maximization. wa;deiived 7
Starting with f.o.c. ' o
L af
1 Sy - A
(L a;:“”vl u 3%, 0

R




(2)

(3)

3 (3

Ju

o

form the matrix

- i

- It

-

f1h

a1

1

75~

wiy,

wfoy
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See proof in H and Q, pg. 66 that the preceding determinant is
equvalent to

}
f1 £12 "V
. i

£ 22 a1 20
- Vl - V2 0 g

Almost like a primal and dual problem in LP.

The solution that maximizes output subject to a cost constraint is
the same solution that minimizes cost subject to an output constraint.

Partial elasticities of production

Earlier, we defined ¢ as %A in output for the single input case
%A in input

xla*<
Fad
[H

gle

< §e

For the 2 input case
El =/ 9y
A
1

1 2

[oF)

X
2 x. = const.

=<E.L°f%
sz y x2 = const.




.

in general, in the n variable case

e =y :
Hgll_, for all
X.
w;i- - X5 = 1, n, i #j = const.
j .

o ={ 2y X for all

SN O "'"1' . ‘ ‘ . R L

j y = ;.15 n, L # j = const.
Hence: S 3 for all ,

£ Mp?j i=1,n, i# j = const.

APP, B BRI
J
&

no-oy
E =.1 ¢
i=1
- B = MPP MPP,. . MPP
SANPENEEREIF T S Lo L
APP. APP vl APP-
1 pA n

E is defined as the proportional change in output reéulting from a
unit proportional change in all inputs. Suppose all”xi are increased
by the amount

E is the percentage change in output given that the percentage change
in all inputs is the same. In other words, if we increase the use of
all inputs by -1 .percent, by what percent does output - change?
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Effect of alternative values of E on isoquants:

e 500

0<E<«<1

3007

200

TR
. .
Ve

T

e et i
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¢
X ;
K i

.- 500

400

) .";‘.‘.. 300

f;fébO

- 100
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AG ECON 620

Exercise 8

1. Suppose that a production function is given by:

. 10
(1} vy = A-xla X,

Draw the,isbquant patterns implied by (1).

2. Given the above production function, what can be deduced with
respect to the nature of the 2 underlying single input production
functions. Do these single input functions exhibit increasing,
constant or decreasing marginal returns to the variable input?

P
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Given a production function of the general form:

B, B
;1 x,72

What values would 81 and 62 need to assume if the function

y = Ax

{1) Exhibited constant returns to scale (E=1), but diminishing

marginal returns to Xy and Xy

{(2) Exhlblted increasing returns to scale in the reglon
1 <E <2 S
but'dlm;nlshmng marginal returns to Xl and‘xz;t.

(3) Exhibited diminishing marg1nal returns to xl'aﬁd X, and

d1m1nlsh1ng returns to scale.

(4) Exhibited constant returns to scale, but dlmlnlshlng

marg1na1 returns to xl and Xy

(5) Exhibited‘increasing returns to scale in the region E > 2,
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{6} Exhibited increasing marginal returns to X5 diminishing

marginal returns to X, and 1 < E < 2,

Given a production function:

- o 1o
y = Ax1 X,
show that
E = MPPl MPP2 ..
APP1 APPZ.

. Show that for any multiplicative production function such as:

B B 8
1 1 Xy 2 ... Xn n

the partial elasticity of production

y = Ax

et =MPP.
APP. 1
1
and that' ﬂ.  n
i=1 *

TN
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Under what conditions would the production function:
. BB, B
(1) y = Ax1 1 Xy N X, n

exhibit constant returns to scale?

Under what conditions would (1) exhibit.increasing returns
to scale? - :

Under what conditions would (1) exhibit decreasing returns
to scale?” . A
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" Derivation of XKihn Tucker Conditions

Brief Motivation

Suppose we are producing a product y using 2 inputs X, and X,

the production function is:

(1) Ty = f(xls xz)
we are constrained in that we do not wish to spend more than b

aﬁd X,

dollars on Xy

Hence, our constraint is:
| (2) g(xy, x,) 5D
Specifically, we want to be able to spend less than b dollars on X,

and x.,, if that is optimal given the other resources on our farm,

2’
Add algositive'"slack” variable to (2)_so-that

(3) glxy, x,) +u=0b
therefore: =
Now maximize (1) subject to the constraint _
(5) L= f(xia xz) "'.}\ [g(}’(}., xz) *u - b)]

() AL _E %8

I

.axl axl Bxl
‘ axz 83;2 ‘ 8}{2
(8) 3
@) 28 - gxp,x) -u-b=0
oo ou :

P
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oo

Multiply (9) times
(16) - x2u=.0
Since, by (8)

(1 1l) u

[H

b - g(xy, X,)
Substituting into 10

(12) - r 0 - gy, x))
Suppose (b - g(x;, X,)) > 0

hence, not all of b is being used. Then the shadow price opr implicit
worth of an extra unit of b (A)is zero, i.e., extra labor is worth
nothing if yoﬁ already have more thaﬁ_enough fdr_thbfqther resources
you have. - ' T - |
Suppose, however, that

(b - g(xl’ xz)) = 0 |
then, condition (12) is satisfied if A is not equal to
zero, and is the "implicit worth'" of an extra unit Qf_b; the increase

in the amount of y that can be produced‘with'an'additiénal‘unit bf b.

Some alternative forms of f(xl, x2) that are used in research in

agricultural economics:

{1) Multiplicative:
Y=xx
(What is E for the above function?)
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(2) Cobb Douglasi:

A specialized case of a wide variety of multiplicative production

functions:

i
]
]

(1) Y

where:
Y = output

A = a multiplicative parameter incorporating,
amongst other things, technology

The function is linear in the logs, that is:

log ¥ = log A + o log Xy 4 (1-0) log xz

This is convenient - allows for the empirical estimation using ordinary
(classical) least squares procedures since the parameters A and o are

1 or X2.

Marginal products of the Cobb Douglas:

constants, not functions of x

ay a-1 l-g
5%, © ¢ X *2
1
3y _ _ o 1-0-1
y (L-a) A Xy Xy
2
o=l 1-u
RTS = dxl _ oA L
dx, (1-0) A x,%1 xF%°%
1 2
or '
RTS = & %2
1-o xl

1H and Q restrict their definitions of the Cobb Douglas to include only
the 2 input function where the production elasticities sum to 1. The general
multiplicative function is sometimes referred to as a Cobb Douglas type,
of which (1) is an example.
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Further, since

“§X_ - Coa-1 0 lew
ax o« A *1 *2
1
and
y = A x? le_a
L o-aX - wep
1 1 1
~and CAPP. =
' S Lo -0l '
A *1 %2 =y
Xy 1
hence - APP # MPP for any value of Xy if o # I

Since o< 1, MPP < APP

Exercise:

At what valiie of x, would you be in stage III fdr xl?

Isoquants for the,Cobb Douglas:

Since:
_ S S
(i) Y=A x| X,
@ x =y
o 1-a
AXx



(3) x =<’ y /o
: oo
A x,. /)_._

Similarly

A
(4) X, e

(]
=3
o
-
Q

\\,__“_,/

“\

v

j+]

Since, along an Isoquant, y is constant, and A is a constant

(3) and (4) define families of hyperbolas, the

distance from the origin being determined by the value of y.

Diagramatically: .

Note that for the Cobb Douglas, Isoquants never curve up. Hence,

there is no stage III.

In other words, we can choose values of x. or Xy
please, and y will always show an increasée as-a

as large as we

reSult.

_/‘\
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(3) C.E.S. ({Constant elasticity of substitution) ;
%
= Al xl”’P s (1-w) xR

A cbmplicated looking animal

Prqpertles of the C.E. S‘
(a) Homogeneous of degree 1
See H & Q, pg. 86.
(b) Has a constant elasticity of subStitutioﬂ_eq@al to

o= 1

1+ P

See characterlstlcs of 1soquants

when (yassumes alternatlve values (H & Q, pp. 87 88)

(c) The Cobb Douglas is a special case of the C.E.S. when
o= 1. Requires a fancy proof using L‘Hhspltal's Rule
(pp;'87—88 of Henderson and Quandt)}.

(4) The Variable hlast1c1ty of Substltutlon Productlon Function
_ (VES)

Form:" | i
e _ Xy ~c(1+P), “f /‘6
= Afa x, P+ (1-s) NG x, 1
2 '_7‘
if ¢= 0, the VES reduces to the CES.
Allows for variable, not fixed elasticities of substitution.

ois not fixed, but rather a function of Xy and Xoe Assuming
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(
Summary
Keep in mind:
Elasticity of Substitution
Cobb Douglas 1
Cobb Douglas type - _ -1
N |
L oca. # 1
g=1 T
: o : 1 -
LR _ L+ﬁ?
A constant that may not be
= to 1l
VES }HE i o - o g = not a- constant, but a ;
R ' o B function of xl'and Xy \

(5} Cobb Douglas Production Functien with Variable'returns-tb'SCale;?'

‘11' _ o Oy o O
AR SRR AR A ]

. Whérg; . o) = al-(z)f
oy = oy (2)
' Gg = ag {z)-

where % is a variable hypothesized to influence the di.

Proposed that z could be represented by different managerial ability,
different types of capital, or different qualities of labor,

2See: Edwin F}:Ulveling and Lehman B. Fletcher, "A Cobb Douglas Production
Function with Variable Returns to Scale." Am. J. Agr. Econ.:52, 322-326, May, 1970.

(
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Estimate by log transformation

y= A+ro (@) x *0,@) x,

roaglz) xg

{6) Transcendental Producticn Function:_.
, “1 QZX
y=ecx et

dy ™M1 -

ax T Y& ep)

Can you solve for dy/dk.J Maiimuﬁ‘output:.
o4

1 a
yGmr ) = 0

Hence:
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R

Properties of:

"textbook production function."

When «a

9 = 0 the function 15 a

Cobb Douglas type with a constant productlon elastlclty equal to

Oﬁl.

See:

Transcendental Production Functlon "
Nov ., 1957 o

A.N. Halter, H, 0. Carter,

and J.G. Hocklng
J. Farm Econ.39:

"A Note on the
966-974,

Value of %y Value of o What happens to y
0 < % 21 a, < 0 increases at decreasing
. rate until _ o
x = -1
ol then
decreases 2
oy > 1 a, < 0 increases at increasing
rate untll_x =M +\/a1
e,
. 2
increases at decreasing
rate until o
X o= ""_1 l
decreases @2 s then
0<a <1 o, =0 . 1 increasing at decreasing
- ' rate '
al'= 1 o, = 0 increases at constant rate :
a4 > 1 a, = 0 increases at increasing rate
0 <o, <1 a, > 0 increases at decreasing rate
1 2 until o, SO
o } T ox o= -1 7+V 71 ,then
| %2
increases at increasing rate
4 2 1 Gy >0 increases at increasing rate
When o, < 0, the function appears to be equivalent to the 3 .stage
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Some tabulated values for the Transcendental:

R B
¥ = cxX e
Suppose: . -
c =1
.0!,1 = 4
then. L
o4 -2
y =X &
QX;; 4x3e'2X eJZx "4 0:
dx ‘ x =
...;"?: | e-2x (4x3 4
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\\,. ‘

RV

WS

Ay

. 002
.021
. 047
. 065
065
.052
031 -
Loio
H”L;,OOQ
'T'~.021_ '
030

-, 033

Tabuldted Values

X e~2x X4 y

0 1.0 0 0.000
.25 606 . 004 . 002
50 368 . 063 023
.75 .223 .316 070
1.00 . 135 1.0 135
1.25 ' ‘;082- 2.44 .200
150 }..oso - '5,06 252
1.75 .00 ‘9;53 - 283
200 o8 16.0 .293
2.25 : i; o1l 2563 2.284
2.50 fi;007 o z0.06 .263
2.75 i_{béd | 57.19 .233
s.00 . .002. 810 200

ore that 2X 43 . 2341.2 0 (the function

e~ (4x

when x

=2

Note also that all three stages of production are’
function increases at an increasing rate until

increases at a decreasing rate until, .

CxE

assumes its maximum .

or

[+3
x =1 _
o T2

2

represented. The
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{7) Generalized Power Production Function1

) L 2. .
£y, X0 £, X)) Bl %)
Y = Ax ‘ X

' 2
or, more generally
o ok
k i (Xl"‘xk)

Y = AL X, - eg(xl..x

‘ . )
S T K

Special Cases.
-l . 1 2
(@) gy, x;) = 0and £ = ay, £ = a,
‘results in a Cobb unglas‘typé.

2

S o . SRR
(b} g;?l’ xz) = 0 and £~ # 915 £ #.32 i
T B I
but £ = f {xl,-;z)
9 2 .
and £7 = £7(x, xz)

and fl, fz, homogeneous of degree zero
in x results in Cobb Douglas
with variable returns to scale,

(€) alxy, x,) = vyxX; + 7%,

and fl = O f7 =

1’ v

results in the Transcendental,

1See Alain De Janvry, "The Generalized Power Production Functiom,"
Am. J. Agr. Econ, 54: 234-237, May, 1972, Also, for an application see:
Alain De Janvry, "Optimal Levels of Corn Fertilizer Under Rlsk " oAm. J.
Agr. Econ. 1-10, February, 1972,




96~

The Generalized Power Production Function (GPPF) can describe
all three stages of production if g(xl, x2) # 0.

De Janvry works out the Marginal Productivities for the
GPPF in the cited article.
YMP vs.. MVP

Barlier in the course, we defined yMp as MPP - P,

Sometimes,
P # a constant
Rather P=y (y)
and o9 <o

hence, & demand function of a negative slope is indicated.
Lets start with a definition of TVP in this case:

TVP

Tpp - P

Hence:
TVP

TPP « ¥ (¥)

but, there is also some underlying production function
| y=4¢ &
Hence:
VP =y » ${(¢(x))
A rather cdmplicated looking bird to say the least!

Define

MVP is the change in TVP with respect to a change in
input use o
. 4TVvP

dx

Hence: MVP
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a constant

[

Given that P

TVP = py
and MVP ='E§X-ﬁ'dTVP
dx T

Now, however, since

TPP « ¥ ($(x))

- TVP =
dIvp = y - §%'é% + P dy
dx dx
Hence:
myp = p X . y 4V d¢
dx _d¢ dx
ot S
01d A real
definition animal
of VMP
What is:
y & d¢
d¢ dx
We all know Y is TPP
d . dy -
~ R since y = ¢(x)
dy . . . .
Ty is the change in price associated
with a change in the output level,
So
MVP = P - MPP + Yléy- MPP
d¢
MVP = MPP [P + Y -?'-E:-E'-'"J

dé
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o
82

MVP = MPP + P [l +

but dy is really dp so MVP = MPP - P {1 + nglﬁ

a6 dy p dy
1
MYP = MPP =« P [1 + E-}
d
Hence:
MVP = VMP [1 +-1/Ed]

Exercise:

Given the above formula, why is it that for a demand curve for

the output that is a horizontal, straight line, MVYP = VMP?

MVP is usually < 0 (i.e., a downsloping demaﬁd curve)
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~99.

YMP

}:MVP

actual TVP

1]




Hence:
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Marginal Resource Cost

We can do the same thing for MRC.

Suppose TRC = vx
if' v = constant
MRC = dTRC
=V
dx
However, suppose
v o= B(x)
In particular, suppose
dv _ dé
&x T & “F
or ‘
dv _ de&
x T O

What real world situations would result in these conditions?

Then TRC = 9(x) x.

ATRC . dx ds
x T '® T *w
MRC = v + X %%-
Why?
MRC = price of input +

amount of input x

change in input price with
.respect to a change in input use.

MRC -=.v(1 #+ é—)
’ X

MRC > v if EX > 0
MRC < v if E
: x
MRC = v 1if E
T X

A
<

H
8
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What is the slope of the MRC curve?

We need to find dMRC .
dx

We know that if

dMRC

dx < 0

We have

dMRC _

dx

MRC

\Q’"MP: . P
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dMRC . .

MRC

X
\4{’ MPP « P

Technical Factor Interdependence

Factors are interdependent if the marginal productivity function for
one factor shifts if the quantity of the second factor varies.

A picture:

Y

(An increase in x, increases the MPP of x,) “\%\h ‘\%\xl

The above picture illustrates technical complementarity assuming

i 0
X > X, ’y
3(§§1}

> 0

8x2

N
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Excerise:

For the Cobb Douglas type functiom, are the inputs Xy and Xy ==

competitive, independent or compl mentgry given:

s 1y 2
yoE 1 2
How about:
y = ax; + bx2
How about:
. 2 . "xl 3 . —x2
Y= X2

Technical independence

o (2L

) =0

Bxl
sz

{An increase in Xy does not change the MPP of Xl)
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Technical competitiveness

Y

The above picture illustrates technical competitiveness assuming

1 0 Y.
x2 7 XZ 9 X
3% < (0 an increase in X, decreases the MPP of
3%, *1.
Homogeneous functions and Fulers theoren

Definition: A function is defined as being homogeneous of degree

n in the variables if:
n
(1) f(txl, ven txm) = t f(xl, ee. X}

Example:

What is the degree of homogeneity?
Multiply Xy and X, by t

3 A (ex® wx)t™

o o  1-o 1-a
{4y At X1 t x2

TN
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Summing superscripts on t:

Hence:

1 o lea
5y At X X,
n P SRR - S £
(6) t Y=+t Axl Xy
where n o= i

(Zj is homogeneous of degree 1 in the inputs Xy and Xoye
A doubling of x; and X, will yield twice the output.
Consumer demand functions are often specified to be
homogéneous of degree zero in prices and income that is,
if:

Z, = ¢(P1, cer Pm’ 1)

then
= ¢(tPl, e th, tl)

where n= 0

A doubling of all prices and income will yield mo increase in the
demand for Z_.

Exercise:

1

What is the degree of homogeneity of the following functions representing

the demand for Z

N
2

1) z, =
P1%2

@) 7, = I
1%

) 2y = 2 <1
P
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Some functions are not homogeneous.

For Example:

CHRERCHE

Can't factor out t.

Exercise:

Is the function Y = Ax

homogeneous?
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Euler's Theorem

Fuler's theorem states that for a function homogeneous of degree n,
the following relation holds.

1) Xy %%—— Fooa. + X g . ny
1

Proof:

We begin with the initial relation

2) y = f(xl, e xm)
Now let
(3} Xy = alt
X, = ayt
X, = amt

We know that for homogeneous functions:

(4) f(at, at, ... at) =

2

n
(5 ¢ f(al, Bys voo am)

Since

(6) vy f(xl, Koy +ee X h]

t, ... &%)

(7) y'= f(alt, 2, -

and

n
8y t f(al, Ays e am)

the total derivative of (7) with respect to t is

o) -2 %o 4, . e 9
dt Bxldt sz atr 5?;-§€~
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(y = £{x), x = g(t) since x = at)

Since x, =a.t :
i i
(10) dxi - a
dt
and:
an &y _ of 2of 3f
at . M1 T oax, %2 ... Tax A
i 2 i

But also, differentiating (8)

(12) dy _ _.n-1
T nt f(al, Bps oee am)

or Setting (11) and (12) equal and multiplying by t yields:

(13) 2f of 3, . .
ax alt T 5 azt e ® IxX amt
2 m
nt f(ali az am)
or
(14) £ of of
3x x1 N 3x XZ e 3K xm =
1 2 m
nt" flag, ay, .es a;)
but
n ey
nt f(al, Bos ve am) =
n £(ta;, ta,, tam) =
n f(xl, Xy vee xm) = ny
Hence:
ax., 1 3x, 2 777 5% m
1 2 m

Q.E.D.
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Note that for a function homogeneous of degree 1

o S5E af
= X, v r— X, f .. o= X
8x1 1 8x2 2 me m ¥y
MPP. - x. + MPP_ x, + ... + MPP_ x_ _
x1 1 x2 2 xm m=y

Product Exhaustion Theorem

MPPx could be the relative price of the input X, -
i

Fundamental Truth - For a production function homogeneous of

degree 1, if each resource is paid its marginal product, total
product will just be exhausted.

Exercise:

hence:

Will the product be exhausted if the production function is

homogeneous of a degree greater than one? What about less than
one?

It follows from the product exhaustion theorem that long run
profit will equal zero.

1y £ , 28 L2
ax 1 ax 2 ax ™ Y
1 2 m
(2) _ 3f of ¥
Pax. 1 PP % TP Xy TP
1 2 m
(3) but » 3w =Y from f.o.c.
{43 lel + v2x2 + mem = ¥p
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Input Demand Functions express demand for inputs as a function of input

and output prices. :
C

y = axy

I=rpy - V¥

I = paxlu = VX
- ax -l = 0
ax, " P T

(I max condition)

1
=

v axu
pax,y

1

1 ———

apa

v\
1 Na-l
-apa

I. Can we ascertain what the impact of (1) an increase in the price of

e
[

e
it

the demand for Xy input v. Clearly, if a < 1, a-1 < 0.

Hence:

. o1 a-1  oa-1 a-l
Xy =Vy p a o
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Hence: _ dk Since Vs By O, d, all > 0 and
1

1 E!.—:T.:O

No real surprise as the price of an input goes up, less

is demanded.

II. What is the impact of an increase in product price on the demand for

an input?

—— > 0 since

Vl’ p, o, a, all > 0

1
and - a-1 <0
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It has been widely disseminated that the demand for an input to
the production process is merely the demand for the final good less a
processing margin.l

Hence:

i

processing {marketing) margin

Figure 1.

This implies that the demand for the input is inversely related to the

product price. Hence, dx

dp
plicative Cobb Douglas type production function. Clearly this is not

1 Under the assumption of a multi-

< 0.

the case,.

Figure 1 is nonsense!

1See: R.C. Haidacher, "Some Suggestions for Developing New Models

from Existing Models,'" Am. J. Agr. Econ. 52:5, December, 1970, pp. 814-819,

especially 817-818,
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The 2 input case:

1. VMP demand

tracing out the demand function for the input Xy along the VMP curve.

yd / W e SR |
~ h N\ MN%N““NWNM~APP '

v s st i renran ¥
1

v.©
1
— ~ =
MPP -« P
Production function:
- ax, %
Y 1 X
2 o0 <1
Could use oy and Gy Oy # oy but not necessary to argument.
Math is.simplified.
Profit function:
I = pax 0lx ¢ .
paxy Xo - VgXp -t VX
L . o pax CL_lx Yoy, =0
-3 paxy X 1

1
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Exercise 9:

1. Suppose a production function and cost function is
y = ax 5
i
¢ = VX,

What can be deduced with respect to the elasticity
the input xl?

2. Suppose a production function and cost function is

y o= aX

c = vX

What can be deduced with respect to the elasticity
input xl?

3. Suppose a production function and cost function is

.6

y = ax;

c = vX
1

What can be deduced with respect to the elasticity

input xl?

given as:

of demand for

given as:

of demand for the

given as:

of demand for the
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-1

oIl o o
o paxy X, -V, = 0

sz

o LET T

!

Hence:

X = @(P: Xzs Vl)

Wish to find:

Bxl Bxl le
» )]
op 9X, vy
-1
i NS —_— ]
(1) IX 1\ o-1 |
. 1 = e e L
5 ( YN Y
1 -1 -0
;o1 £ ova-1 ¢ ™Sho-l
where =iV, fol | X
a \ 2.:‘ E"'-.. d ( 2)
Hence:
X -1
-551-‘— > 0 Since o-1l >0
-0
(2) axl s . e 1 i
sz e | J
1 -1 -1
where r = /v Wm_lfu\a—lf 61
2} Y i
b r
Hence:
9xX -0
5;5- > 0 Since oh~1 >0
2

Use of extra Xy also requires use of more X,.



(3) o /1 G a1 “1{/"r"
v a-1 V1 L
where -1 ) 1 -
T = u?ul fI’}anl {X%)a—l
Hence: '
ax
1 < 0 Since miw < 0
8v1 a-1

As the input price goes up, less of it is used.

II. Profit Maximization Demand

Wish to trace out the demand function for X1 allowing x

2

to vary.

(Are the inputs technically competitive, independent
or complementary?)

e
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f.o.c.

1) o o-1 o -
axl apax, X, vy 0

2) a o, a-1 -
x, | P v =0

divide (1) by (2)

(%) X =

Substitute (3) into (1)

(4) a~l o o -a -
apax;” VXV, vy 0
20-1  -o l-o
(5) apax, v, = Vv
=1 +0 1~
~ 2a-1 20~1 20-1
(6) X; = (apa) v, vy

Wish to determine the sign on

le Bxl Bxl
» H

op 8v2 8v1
axl

N ?
55 > 0 Why?
%) < 0 Why?
sz

IX

1 < 0 Why?
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CHAPTER VI

Production of Joint Products

Consider a case where:
glyys ¥l = x

alternately:
$(yys ¥y, X3 =0

A production possibilities curve is defined by the equation:
x° = g(yys ¥yl

This is sometimes also referred to as a product transformation curve.

There is a whole family of production possibilities curves (PPC}
that can be obtained by specifying alternate values of x.

The Textbook PPC

The textbook PPC is as shown in Figure 1.

guns

. buttezr
Figure 1.
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All of you are familiar with a.P?C f%om your elementary courses. We
are attempting to represent alternative amounts of butter and guns

(yl and yz) that can be produced from a fixed set of resources (k) that
are available to a country.

The PPC encloses a feasible set of possibilities for the country.

Z1 is feasible, since it lies interior to the PPC. 22 is infeasible,

since to produce Z, would require more resources than the society has.

2

Z3 is feasible, a boundry point "on the frontier."

Note also that 22 lies on a new PPC requiring x' amount of resources
where x' > x_. The further a PPC lies away from the origin, the greater
the amount of x that is required.

On a firm level we merely replace butter and guns (yl'and yz)

with hogs and beef or any other 2 outputs of interest that compete for
the same input{s).

Proposition:

Whether a PPC is convex to the origin, concave to the origin or
a diagonal straight line depends on whether the 2 production functions

for Y1 and Y, exhibit increasing, decreasing or constant returns to the

variable input Xq-

Exercise:
1. Graphically derive a production possibilities curve from two production

functions. Assume that both production functions exhibit diminishing
marginal returns.

2. Do the same as 1, except assume both production functions exhibit
constant marginal returns.

3. Do the same as 1, except assume both production functions exhibit
increasing marginal returns,
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The Rate of Product Transformation

The Slope of the PPC is the rate of product trarsformation (RPT).

In finite increments, it is equal to
.Ay2
Ayl
or, using calculus
it
dy1
Suppose

x = glyys ¥p)

98
Yy

g

Ax
By2

H

byy * AYs

The total differential of x is

ax =28 ay + 2B ay,

4} oY,

. e} o = 0
Since, along a PPC, x = a constant, dx
Hence:

- g 8g
0 5y, dyy * By, dy,
(s34
- if%. = 3%/;y1
dy g
1 g
//Byz

The=RPT is equal to the ratio of the marginal cost of y; in terms

of x to the marginal cost of Yq in terms of x.
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1 - Byl
= %
4
1 =  8y2
= %
72
Hence:
. og
ReT = "9 _ By,
dyl *ng—
vy
= %2
ag . __ox
3y 3y
3g x
{(Why?)

The RPT equals the ratio of the MPP of x in the production
of Yy to the MPP of x in the production of Y1+

Revenue Maximization Subject to an Output Constraint

Deals with the optimum allocation of a fixed set of resources amongst

alternative outputs (yl and YQ) TR = pyy; + PyY, Product transformation

curve a locus representing alternative quantities of Yy and Yo that
can be produced with a fixed amount of x = xo defined by:

X =gy, ¥y)
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A Picture:

72

O
B X = X
1
H ke i X = x
14 .“:,:y-\mm:.4'4!?:,‘,‘_5'/."€ - 2
§ ,L‘:: ot ar gl o X =X
s 5}&5"" s ' e
4

Constraint:
<0 = 8l vy)

The Lagrangian:

¢}
L = p}.yl + szz +/l“ {X - g(yls yz)]

where A{is some undetermined lagrangian multiplier
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(Increase in total revenue associated with an additional unit
of the resource x).

The lagrangian has the same function as before.

f.o.c.
(1) %1 = Py - »*.{%)g;l =
(2) %ﬁé = Py - Af%%é =0
(3) §5 =% - g0 v,
dividing (1) by (2)
Py
b, Wy
Total revenue max at for any x = x” . Where gl_ = slope of Product

Py
transformation curve.

no’



-124-

A picture:

Maximum total revenue for a fixed amount of resource X where slope

of TR line is eQual to slope of product transformation'curve.



Also:

Since

Since:
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= g
Py 7 3y,
. og
P
1 i
5 = "':"‘!f
Byl
p2 _ -{;..Pf
og
ayz
x = glyys ¥,)
oy a
1 +p, =
5x L /
ay.
2 . = ’/L/."
X Py /
- £F
“eyy “812 &y
- '{fgz}_ - ‘(fgzz g2
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Profit Maximization:

TR - TC

e
i

= pyy; + Pypyy - VX

Since X = g(Yla Yz)

= pyy + pyyy - v = glyys ¥y)
all dg
== =p, - v= =0
Byl 1 Byl
all ag
e ¢ ...\,r__.lz()
3y2 2 8y2
Hence:
ve B P
3g g
Eyl Byz
or
] 9
V.= py 1 = Py !
og 3g
or
3 ]
vEopy 1 = P, 2
- Tex 9x

In other words:

MVP of x in production of y, must = MVP of x in production of Yy

and be equal to the price of the resource.

5.0.C.

- vEyy < 0

and
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L Ve Vein

i

{ V8 Vs

or

<

(—Vgll) (“ngz) - [(“Vglz) [”’ng'l)] <0

Ensures 5 pPC as follows:

/

s
/

Y2

P R AR T TR AT £ e

\

Y1

Competitive, Complementary and Supplementary Products

Competitive Production

RPT increasing in absolute value:

2 o -ﬁm“m\‘"&
L,
E \"'\
\\
‘q‘.:
b

the traditional case
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Complementary Production

Over a range, increases in production of Yo also increase production
of Y1

(i.e., Legumes & Swmall Grains)

Complimentary
Range

: y
RPT increasing rather than decreasing over a range.
Supplementary Production

Over a range increases in production of Yo do not decrease
production of Y1

(i.e., farm flock of chickens)

Supplementary ™

Range x\\x

y
1
RPT = zero over a range
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some other possibilities:

" Joint Products

(Beef & hides)

71

Product transformation curves consist of single points RPT

not defined,

Constant RPT

Y2

P 3 Product
gﬁ« , %, Transformation
Curves

Y1

derived from 2 production functions both with constant marginal returns.

TR max - produce all y, if absolute slope of price ratio > slope of product
1 P P P D

transformation curve. Produce all y, if absolute slope of price ratio <

slope of product transformation curve,

TR max at any point if price ratio = to RPT.



-130-

Diminishing RPT

Derived from production functions with increasing marginal returns.

2
y

§

1
Calculus breaks down when finding TR max conditions since s.o.c.

are not met {why?).

Not a very likely situation,

Combining Factor-Factor § Product-Product Models

Suppose: A farmer can on his farm produce 2 kinds of feed that can
be used in the production of beef,

P.T.C. given the fixed resources on the farm,

(forage) y2

BRIy
e T

' o .
o P = X , the fixed resources
T, on the farm
Y e

7Yy (grain)
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Isoquant for beef production

Yy
{forage) .
u"-'\-
\-“\\
i \"‘\q
i \R“\
%n""m N
j MM“““-1,OOO 1b, steer
i
I
i
}
;.;CA -

y; (grain)
Superimpose: beef isoquant on product transformation curve.

72
{forage]

sy 1,000 1b, steer

ke

mw“\y; (grain)

Maximizes amount of beef produced where MRS of grain for forage =
RPT of grain for forage. |
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Suppose:

Y

{forage) \\

%
\\ 71,000 1b, steer
\
} .
y, (grain)
Is there any way for a farmer to produce a 1,000 1lb, steer?
Depends on the Price ratio.
IF:
l“
4
Y2 Y
(forage) ‘
S

1,000 1b. steer
0 i
y, (grain)
the relevant price ratio is p}/- Produce 05 units of forage, OM
2
units of grain.

Sell RS units of forage, with the money received purchase
MT units of grain.
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“General Bguilibrium' Model: A General Mathematical Statement of the
Preceding:

Suppose a entrepeneur (farmer) can: (1) produce any of s possible

outputs which are valued at market prices.

Hence, he wishes to maximize revenue:
(1) R =Py *PyY¥, * oo TP
where y. = the ith output and,pi.is the ith price. Suppose
i
the production function relating inputs to outputs appears as:
(2) d’{yl’ Y2? o YS’ X1: xz, voe Xt} =0
in its implicit form; and any of t outputs can be used to produce the Yy
Suppose the entrepeneurs cost function to be:
C = lel + V2x2 oL Vtxt
vhere Vj = the price of the jth input. Formulating the lagrangian to

maximize revenue R subject to the constraint imposed by the cost function

and the production function yields:

() L=pyyp *Py¥y -ev * DY

s’ s
=A@l Yy eee Yo X Xos e X)
o
(A ViXy T VX, La. - vtxt)

Where:

A and 4/ are undetermined lagrangian multipliers.

The appropriate f.o.c. are:

(5) 3L 3¢
—‘“:P-.A——_zo
Byl i Byl
al ap
3y, T Ps Ty, 70



Since:

(6)

{7}
Clearly:

(8)
further:

(9}
Moreover,

(10)
and {(11)

(12}
and

(13)

aL
Bxl
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AL

= ¢(yys ¥y

1t

o
¢ - VX -

for

if

for

i

ail
j

all
£ J

TN
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Then a fundamental relation holds:

(14) .p;. dy, . ' P dy,
Vl dxl R "“{r‘:g “&""}E‘; -
- Py dyy py dyg N
woa v T

What is the verbal interpretation of this relation?
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CHAPTER VII

An Iritroduction to Linear Programming:

Suppose we wish to solve the following problem:

Maximize
(1) 4&1 + sz (the objective function)
$.T.
(2) 2#1 + X, < 12 fthe constraints)
(3} X; * 2x2 < 16

Note that we make the following assumptions:
(1) the objective functions and the constraints are linear,
not curve linear functions (hence the term linear programming).
{2) Xq and X, are infinitely divisible - that is they do not
necessarily have to assume whole numbers.
{3) Coefficients are constant and known with certainty.

Remarks:

Nonlinear programming handles situations when the objective and/or

constraints are not linear functions,
Integer programming handles situations when some x's must assume
whole numbers (i.e., 1 2/3 tractors or 1 5/8 bulls is not allowed).

Stochastic programming handles some situations when coefficients

are known only in a probabilistic sense. There are many more

kinds. Linear programming can hence be thought of as a subset of

the general area of mathematical programming.
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Note also that linear programming is not the same thing as
computer programming, although most linear programming algorithms

are solved with the aid of a computer.

The graphical illustration of the linear programming problem reveals
that the 2 constraints form a "quasi" production possibilities
.curve, Note that only the shaded area interior to both constraints
is relevant. (In particular, let Set A denote the area bounded

by equation (2); Set B denote the area bounded by equation (3).

Then our feasible set (shaded area bounded by the PPC) is denoted

by A1B)

How are the slopes of the objective function and constraint functions

obtained?
Why is the area exterior to A/} B irrelevant?

Note also that the "optimum solution" to the LP is that point on

the PPC which moves the objective function furthest to the NE.
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Introduction to the Simplex

Graphical solutions to linear programming problems are cumbersome and.

impractical for problems with more than 2 constraints.

One method for solving an LP without graphs is the Simplex Method. The
Kohn Tucker conditions outlined earlier are at the heart of the solution

method.

We begin with the original equations

4x1 + 5x {a max.)

2

Xy + 2x2 < 16

Now add positive slacks to each equation

Uy

Uy

Hence, our problem becomes

4ki + Sk

2 {a max.)
L N
le Xy F lul + 0u2 = 12
Xy ¥ 2x2 + Ou1 +1u2 = 16
Note that:
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(2) u, appears in equation 1,
u, appears in equation 2,
u, has a coefficient of zero in equation 1

uy has a coefficient of zero in equation 2.

or
2 1 1 0 12 -
1 2 0 1 16
4 5 0 0 0

Note that the 12 and 16 appear on the right-hand side of the matrix. Hence,
they are known as the right-hand side (RHS). Sometimes they appear on the
left-hand side of the matrix. This really doesn't make any difference in
solving the problem, but people have become so usea to calling them the
right-hand side, they call them the right-hand side even if they are on

the left-hand side., So much for right-hand sides.

The Simplex procedure is nothing more than a series of matrix operations
designed to sweep out the original coefficient matrix converting it to

an identity matrix.

Column

Row (1 @ RO (5)
(1) 2 @ 1 0 12
(2) - 1 @* 0 1 16
(3) 4 5 0 0 0

The‘f indicates the entering column.
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(2) This is chosen because X, contributes more to profit than Xy -
Actually we can choose either.

Now, since 16

The second resource is the most 1imiting;
The —» indicates the entering row since the second resource is
most limiting.
(g) * becomes the pivotal element.
We begin by dividing every value in row (2) by (é} * the pivotal element

forming a new row (2).

(N2) 1/2 1 0 1/2 8

Now take old row (1)}, and subtract from it the new row (N2} 2 times (E)
which is the intersection between the entering column and the old row 1.

In short:

®1) = 1) - (D x o)

(N1)

It

2-1/2 x {1} 1-1x (1) 1-0x (D 0172 x (I 12-8 (D)

11/2 0 1 - 1/2 4

The new profit row is

™3) = 4-1/2x (83 s-1x(®) 0-0x(5) 0-1/2 x G o8 x (®

1172 0 0 -2.50 -40
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Hence, the new matrix is:

Column

Row | )y @ () @B
(N1) w>{&5313j * 0 1 - 1/2 4
(N2) (;Z%) 1 0 1/2 8
(N3) 1 1/2 0 0 -2.50 -40
The 1 1/2 inN3 indicates that some additional Xy would be profitable.

w;4 -8

a1/2 7
8
P = 16
(12,

Following the same procedure, the new matrix becomes:

(NN1) 1 0o 2/3 - 1/3 8/3
(NN2) 0 1 - 2/6  2/3 6 2/3
(NN3) o o0 $-1 $-2 § - 44

The solution values are 8/3 units of X4 and 6 2/3 units Xy The maximum
value of the objective function is $44. The Implicit worth (shadow price}

of xl-is $1. The Implicit worth (shadow price of X, is §2).
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Link to Kuhn Tucker Conditions

The same problem can be solved using lagrangian multipliers.

Maximize:
4&1 + Skz

s.t.
2xi Xy < 12
x, +2x, £ 16

Add positive slacks

2x1 X, + 1u1 + 0u2-= 12

il

xl + 2x. + Ou, + 1u2 16

2 1

Formulate the Lagrangian:

L = 4x1 f sz ﬂkl(le Xy tuy - 12)

- Az(xl + 2%, + u, ~ 16)

2 2

Inknowns are Xis Xos Ups Uy, kl and AZ

Maximizing f.o.c.

(1) 8L _ , _ -
3x1 = 4 le - AZ = 0
{z) 3L _ - -
sz =5 - Al ZAZ = (
4y 3L _ ., -
u 2
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(5) 3L _ -
3A1 = le + x2 + u1 12
(6) 3L  _ _ -
BAZ = x1 + 2x2 + u2 16 =
but
(7) u, = 1z - 2x1 - X,

(8) u, = 16 - Xy - 2x2

Hence, (3) § (4) become

(9) =-x, *u, =0

(10) -X, *u, = 0

2 2

(11) ~AI(12 - 2x1 - x2) = 0

(12) —32(16 - Xy - 2%,) =0
Rearranging (1) and (2)

{(13) Ay = 4 - ?Al

(14)  a; =5 -2,

(15) A, =4 -2(5 - 22,)

(16) Ay = 4 - 10 + 4A2

(i7) ~312 = -6

(18} A, = 2 Shadow price for x

e

2.
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Ay, = 1

1 Shadow price for x

1

Inserting these values in (11) and (12)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
(28)

(29)

-1 (12 - 2&1 - x. = 0)

2

2x1 + xz - 12 = 0

-2 (16 - x; - 2x,) = 0

1

+ 4x, - 32 = 0

~2x1 2

X =

1 16 - 2x2

12

i
o)

2(16 - 2x2) + x2 ~

32 - 4x2 + X, - 12 =0

2

~3x2 = -20
20

2 = TF = 6 2/3

X

16 - 2(6 2/3) =2 2/3

bl
[
It

Optimum values for x

1

and x

2
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The Dual

Recall that in our work with Lagrangian constrained optimization problenms,
the solution that maximized output subject to the budget constraint was
the same solution that minimized cost subject to the output constraint.

The same analogy exists in a linear programming context.

Our original (Primal) problem was:

{a max.)

4x1 + sz

The correspondihg dual is:

12z, + 16z2 (a min.)

1
s.t.
221 * z, > 4
z1 + 222 >3
Note that:

(1) In the primal is a maximization problem, the dual is a minimization

problem, and vice versa.
(2) The inequality constraints are reversed.

(3) The new unknowns are Zy and Z,-

The rows of the dual essentially correspond to the columns of the primal

and vice versaq.
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- ,i\"}
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Note from the graph that the feasible solution area is bounded from
below by portions of the 2 constraints. These portions of constraints
form an (quasi) isoquant with linear segments, just as with the primal.

The constraints formed a {quasi) PTC or PPC.

Note also that the solution values for 24 and z2 in the dual are the

shadow prices (values of lagrangian multipliers A and A,) in the primal.

The dual is solved via the simplex method following the same procedure as
the primal. The simplest way of solving via the simplex entails merely
multiplying the objective function and constraints by (-1} making the
new probiém a maximiza..on and recalling that an inequality is reversed

when an equation is multiplied by -1.

We solve

-12z, - 16z, (a max.)

We can also solve the dual directly with a few simple procedural changes.
Exercise:

(1} Solve the above revised dual.
We can also show that the lagrangian muitipliers in the dual are the
solution values for Xy and Xy in the primal.

Exercise:

(1) Solve the dual following the kunt Tucker conditions.

—
. ~
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CHAPTER VIII

‘Market Equilibrium

Demand Functions

The demand by the ith consumer for the jth commodity produced by a producer

can be expressed as:

Yi3 = ¢(Pps Py oo Pys -on Py 1)

where
Prs +-+ P, is a vector of prices for the

n commodities

Ii = the consumers (real) income

Aggregate Demand for all m consumers for the jth commodity

i
E Yij =% ¢(pgs Py on Pys +ov Py 1)
i=1
In short:
!
L :
yiu
| |
:\ .
'\ A
! {
“:) : "‘\_\
B T I S— _y._;_j T T e e 1 T S ks it e b ittt
Demand for commodity Demand for commodity Aggregate
Demand

yj by Mr. A

yj by Mr. B
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Supply functions

The individual producers short run Supply curve for Yy is his marginal
cost curve above AVC

MC

Sy,

e e e e

© UARC

Why?

In the long run all costs are variable (Why?) and the Supply Curve for
the firm is the long run marginal cost function.

Exercise:

Suppose
TC

2
2y, -2y, + 18 y.
y Yj Yj

+12

(1) Find MC,
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(2) Find the supply curve for the firm expressed as a function of

price.

{3} Find AVC.

(4) Find the aggregate supply if the industry consists of 50 identical

firms.

Models of Imperfect
Competition

Key assumption:

A downsloping demand curve

In other words:
y = f£{p)
f'{p) <0

Monopolist - the firm is the industry. Hence, the demand curve for the product

of a monopolist is similar to the demand curve for an industry.

A monopolists total revenue is:
TR=p *y
Marginal revenue is:

d
dIR . p ry 2
dy
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Since gg- < 0, MR always lies below price when a

downsloping demand curve exists. MR declines at a twice the rate of

the demand curve. Let the demand curve be:

p=a-by
P
2 .\\k\
RN
a | U
§ 1
! \\\M\H\
y
Since:
TR = py
Hence:
TR = ay - by2
MR = a - 2by
P
o Y O
0 M T Y

i

ST
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Furthermore: fy'

TR = i} (a-2by) dy

".‘

8]

Elasticity of Demand

Since: a

MR = 0 if |el

H
=

MR > 0 if |e| > 1

Profit Maximization

TR = £(y)
TC = g(y)

I =TR - TC



& © & dy 0
MR = MC
dn | e & o
dy2 dy2 dy2
¢ d%g
3 < Ty
dy dy’

The slope of MR must be < the slope of MC. If MR is decreasing

and MC is increasing, this condition is satisfied.

Some Applications:

Discriminating Monopolist

Suppose a market can be segmented.

Demand for oranges.
fresh market.
juice market.

Even though oranges for both markets may be identical, it is
probably more profitable to charge more for fresh oranges than

for juice oranges,

Let ¥y =y, * ¥,

where y = total available oranges
Yy = amount sold in first market
y, = amount sold in second market
Then:

1= TRl(yl) + -TRz(yz)

T
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9l - 3TR  2TC = 0
Byl Byl ayl
8l - 3TR aTC -0
3Y2 3Y2 BYQ

Since by assumption it costs the same to produce an orange for

either market

3TC | 3TC | o
9y, 3Ys y
Hence:
TR _  3TR M
9y, Y, y
MR = MR = MC
¥y Yy y

The Marginal Revenue in each market must equal the Marginal

Cost of the output as a whole.

A Eicture:

Fresh Market Juice Market
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Entrepreneur produces OA + OC units of oranges -- sells oranges
for OB in the fresh market and OD in the juice market. Note
also that if it is to be profitable to segment markets, the

elasticity of demand in each market must be different,

The Perfectly Discriminating Market and the Extraction of Consumer Surplus

The perfectly discriminating monopolist is able to extract all
the consumer surplus by selling each unit of output to the

individual who pays the highest price.

A Eicture:

s it

All purchasers do not pay $3 for the output. The first
purchaser is willing to and does pay $6, the second purchaser
$5 and so forth. Total revenue to the monopolist in this
example is:

$6 +1 + $5 1+ 84 -1 + 83 -1 = §18
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Ordinarily, total revenue would be:
4 x §3 or $12

Problem -- how do you discriminate among purchasers, if each

unit of the commodity is the same,

There have been some experiments with the Dutch Auction for
selling livestock. Start bidding at extremely high price.
Price is gradually lowered. This is an attempt to extract
the consumer surplus we have described. Of course, under
these conditions
D =D{y)
(Pemand for output y)

yO
I= 7" D) dy - TC(y)
/
Then:
dall dTC
Iy =P - =0
d1 = b = MC
dy

Profits are maximized where:
MC
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Entrepreneur produces OA units of output. Why would the

entrepreneur not want to produce morxe than OA units of

output?

The price of each unit sold, of course, would vary.



Mathematical Concepts
Basic to Production Economics

1. Find dy for the following functions:

dx
i y=2x
- 2
il oy = x
iii y = x/3
iv y = £(x)
vV oy = Zax

2. Integrate the following function:
\Jgﬂ(xz + 3x3) dx =

3., Maximize:

x3 + 4x2

4, Maximize:

u = u(xl, x2)

st
{

= PyXy t PX



-
5. Find the total differential of the equatiom:

y = £(xy, x,)

6. Evaluate the following definite integral

4

“gnxz dx

2




Intermediate Production Economics

What do the following abbreviations stand for:

(a) MC
(b) MR
(c) MRC
(d) MPP
(e) TPP
(£) Mvp
(g) TR
(h) TC
(i) AVC
(i} AC
(k) TVC

Draw the traditional 3 stage single input-single output production
function.. Show the stages of production, APP, MPP, MRC, and any
other details you think are worthwhile.
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