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El Niño Southern Oscillation and Primary 

 Agricultural Commodity Prices: Causal 
Inferences from Smooth Transition Models∗ 

Abstract 

Global climate anomalies affect world economies and primary 
commodity prices. One of the more pronounced climate anomalies is 
El Niño Southern Oscillation (ENSO). In this study I examine the 
relationship between ENSO and world commodity prices using 
monthly time series of the sea-surface temperature anomalies in the 
Nino 3.4 region, and real prices of thirty primary agricultural 
commodities. I apply smooth transition auoregressive (STAR) 
modelling techniques to assess causal inferences that could 
potentially be camouflaged in the linear setting. I illustrate 
dynamics of ENSO and commodity price behavior using generalized 
impulse-response functions. 

Keywords: El Niño Southern Oscillation, Primary Commodity 
Prices, Smooth Transition Autoregression 

∗ 
Preliminary and incomplete. 
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1 Introduction 

Global climate anomalies affect world economies. One of the obvious 
reasons for this relationship is that local weather events in many regions are 
linked to global climate phenomena (Ropelewski and Halpert, 1987; Stone 
et al., 1996; Barlow et al., 2001). These links are known as 
“teleconnections” (Rasmusson, 1991). Within a set of larger-scale 
lower-frequency climate anomalies, a particular attention has been paid to a 
phenomenon known as El Niño Southern Oscillation, or simply, ENSO. 
Studies have found statistically significant and economically meaningful 
connections between ENSO and agricultural production, commodity prices, 
and even civil conflicts (Handler and Handler, 1983; Adams et al., 1999; 
Chen et al., 2001; Brunner, 2002; Hsiang et al., 2011). 
    Several obvious reasons justify seemingly causal relationship between 
climate anomalies and primary commodity prices. First of all, weather and 
agriculture are intrinsically linked. Unfavorable weather conditions 
deteriorate agricultural yields, which result in shortage of supply and, thus, 
increased prices. Second, weather and energy consumption are correlated. 
Extreme weather conditions (such as unusually hot summers or extremely 
cold winters) manifest in increased demand for energy products (natural 
gas and crude oil derivatives), which are also used as inputs in food and 
agricultural production. As a result, increased input prices push the 
commodity prices upward. Finally, hazardous weather conditions can 
damage infrastructure and thus affect international logistics, resulting in 
increased transportation costs and, by corollary, increased world commodity 
prices. 
    Objective of this research is to quantify economically meaningful causal 
connections between the sea-surface temperature anomalies and world 
commodity prices. To this point, several studies have addressed the 
causality issue. For example, Brunner (2002) examined the relationship 
between ENSO and primary commodity prices using quarterly data in a 
linear vector autoregressive setting. He found that the world food and 
agricultural commodity prices could be highly responsive to ENSO 
variations. In contrast, Berry and Okulicz-Kozaryn (2008) used annual data 
spanning back to late 1800’s, and found no evidence of co-cyclicality 
between ENSO shocks and the U.S. economy. 
    Conflicting (although, perhaps complementing) results from the two 
studies by Brunner (2002) and Berry and Okulicz-Kozaryn (2008) suggest 
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that more work needs to be done to investigate the peculiar nature of 
ENSO – commodity prices relationship. This study examines the 
relationship between the climate anomaly and selected primary commodity 
prices using a nonlinear modelling technique. Nonlinearities in ENSO cycles 
and commodity price movements could prove to be a crucial augmentation 
of modelling the relationship between the two variables. This is because 
ENSO cycles are characterized by asymmetric behavior (Hall et al., 2001; 
Ubilava and Helmers, 2012), as well, commodity prices are known to move 
in a nonlinear manner (Craig and Holt, 2008; Balagtas and Holt, 2009). 
Moreover, the current study will consider monthly time series to account 
for features that could be camouflaged in lower frequency data. Unlike 
Brunner (2002) and Berry and Okulicz-Kozaryn (2008) this study will omit 
economic growth variables; however, the study will implicitly consider 
overall price inflation by using the real commodity price data. 
    To account for possible nonlinearities in the time series, this study 
adopts smooth transition autoregressive (STAR) modelling framework. 
Conceptually, smooth transition regressions were first proposed by Bacon 
and Watts (1971). Afterwards, Chan and Tong (1986) suggested the use of 
the smooth transition model in the time series setting. Subsequently, in a 
number of related studies, a group of authors introduced and developed 
STAR modelling and testing framework (Luukkonen et al., 1988; Teräsvirta 
and Anderson, 1992; Teräsvirta, 1994; Eitrheim and Teräsvirta, 1996). 
    Since its introduction, the STAR modelling approach has gained 
popularity and has been widely applied in studies modelling asymmetric 
cyclical variations (e.g. Teräsvirta, 1995; Hall et al., 2001). Using STAR 
models a large body of studies have examined the potential nonlinearities of 
unemployment rates, GDP, monetary demand, and interest rates (e.g. 
Teräsvirta, 1995; Eitrheim and Teräsvirta, 1996; Sarantis, 1999; Skalin and 
Teräsvirta, 2002). More recently, the STAR modelling approach has been 
utilized to investigate nonlinear features of agricultural production and 
prices (e.g. Craig and Holt, 2008; Balagtas and Holt, 2009; Ubilava, 2012b), 
climate variables, including ENSO (Hall et al., 2001), and the effects of 
climate anomalies on commodity prices (Ubilava, 2012a). 
    In what follows, I will first briefly outline the modelling and testing 
frameworks of the current exercise. I will then describe the data used in 
this study. Afterwards, I will illustrate the results of this research using 
generalized impulse-response functions. 
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2 Econometric Framework 

This section briefly outlines a smooth transition autoregression, and the 
suggested testing framework within the model. Refer to Luukkonen et al. 
(1988); Teräsvirta (1994) for more in-depth description of this model, and 
Craig and Holt (2008); Balagtas and Holt (2009) for the applications of this 
modelling framework in agricultural economics and commodity price 
analysis. 

2.1 A Smooth Transition Autoregressive Model 

p−1 q 

Consider an additive nonlinear time series model as follows: 

∆yt = α0 + β0 yt−1 + 
i=1 

K 

k=1 

φ0,i ∆yt−i + 
j=0 

p−1 

π0,j zt−j + 

q 

(1) 

   

αk + βk yt−1 + 
i=1 

φki ∆yt−i + 
j=0 

                   ˜ 
πkj zt−j  Gk sk,t ; θ  + εt 

where yt is a dependent variable, and zt is an exogenous variable; ∆ is a 
first-difference operator, and p and q denote maximum lag lengths of the 
dependent and exogenous variables, and K is the maximum number of 
                                     ˜ 
additive regimes. Further, Gk sk,t ; θ are bounded between 0 and 1, and 
are functions of regime-switching variables, sk,t , and the associated vector 
                 ˜ 
of parameters, θ. sk,t can be a lagged dependent variable, yt−d , a lagged 
exogenous variable, zt−d , some other variable not included the regression, 
wt , or some function of the any aforementioned variables. Finally, 
              2εt ∼ iid(0, σε ) is a white noise process. 
     By imposing certain restrictions, Equation (1) can yield a number of 
                                                ˜ 
well-known autoregressive models. If Gk sk,t ; θ , ∀k, is set to 0, for 
example, Equation (1) becomes a linear autoregressive (AR) process with 
exogenous variables, expressed in an Augmented Dickey-Fuller form as 
follows: p−1 

i=1 

q 
∆yt = α + βyt−1 + φi ∆yt−i + 

j=0 
πj zt−j + εt (2) 

Further, an additional restriction of β = 0 in the equation (2) will impose a 
                                                                      ˜ 
linear unit root process. Alternatively, if in equation (1) Gk sk,t ; θ only 
take values of 0 and 1 Equation (1) becomes a threshold autoregressive 
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                                                                   ˜ 
(TAR) process (Tong and Lim, 1980; Tsay, 1989). Or, if G st ; θ takes 
                                                                         ˜ 
continuum of values between 0 and 1, wherein the parameter vector, θ, 
consists of the smoothness parameter γ > 0 and the centrality parameter c, 
Equation (1) becomes a smooth transition autoregressive (STAR) process 
(Luukkonen et al., 1988; Teräsvirta, 1994). Note, that TAR and STAR 
specifications allow for the possibility of unit root process in one regime and 
stationary process in another, for example, if K = 1, β0 = 0 and β1 = 0. 
    Let’s concentrate on STAR modelling framework, which, moreover, 
embeds AR and TAR models as the special cases. A generalized version of 
one of the more frequently applied transition functions is represented as 
follows: 

−1 

G (st ; γ, c) = 1 + exp     m−γm /σst 
m 

(st − cm ) m 
(3) 

where σst is the standard deviation of the transition variable. By setting 
m = 1 and m = 2, one obtains logistic and quadratic transition functions, 
respectively, resulting in logistic STAR (LSTAR) and quadratic STAR 
(QSTAR) models. The LSTAR and QSTAR models converge to a linear 
AR model when γ → 0, and a threshold autoregressive (TAR) model when 
γ → ∞. Graphical illustrations of these functions are presented in figure 1. 

2.2 Testing Nonlinearities, Causality, and Nonlinear 
Causality 

The question of whether STAR-type nonlinearity is truly an underlying 
feature of the data is a testable hypothesis. However, one cannot directly 
test the linearity hypothesis, H0 : γ = 0, in a STAR model due to 
unidentified nuisance parameters, which manifests in Davies’ problem 
(Davies, 1977, 1987). Specifically, in the context of Equation (1), where 
K = 1, the nonlinear model will reduce to the linear AR model by imposing 
the restriction γ1 = 0 or 
α1 = β1 = φ1,1 = . . . = φ1,p−1 = π1,0 = . . . = π1,q = 0. Therefore, the 
standard test statistics are no longer applicable. Luukkonen et al. (1988) 
proposed a solution to the problem by approximating the transition 
function, G (st ; γ, c), using a third order Taylor series expansion. This 
results in a testable auxiliary regression, expressed as Equation (4): 

3 
∆yt = ϕ0 xt + 

i=1 
ϕi xt si + ξtt (4) 
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where xt = (1, yt−1 , ∆yt−1 , . . . , ∆yt−p+1 , zt , . . . , zt−q ) ; and ξt combines the 
original error term, εt , and the approximation error resulting from the 
Taylor expansion. The new specification allows the application of 
conventional testing methods, particularly in the test for linearity against 
the STAR specification. This is now equivalent to testing the null 
hypothesis of H0 : ϕ1 = ϕ2 = ϕ3 = 0, where ϕi , i = 1, 2, 3, are vectors of 
parameters from the auxiliary regression. 
    The test of in-sample Granger causality within the linear specification is 
                                                         lcequivalent to testing the null 
hypothesis of H0 : π0 = π1 = . . . = πq = 0, in 
equation (2). This test is valid given that nonlinearity is not a feature of 
the data generating process. However, in presence of nonlinearities, the 
aforementioned test could yield faulty statistical inferences, because 
potential causality may be camouflaged by nonlinear features of the data. 
The test of causality within the STAR framework can be associated with 
the same Davies’ problem as discussed previously. To circumvent the issue, 
we will adopt the testing framework similar to Balagtas and Holt (2009), 
and apply it in the current context to test for both nonlinearity and 
Granger causality in the underlying series. In particular, the combined test 
of nonlinearity and causality is equivalent to testing the null hypothesis of 
  ncH0 : ϕ0 = ϕ1 = ϕ2 = ϕ3 = 0, in equation (4), where ϕ0 is a set of 
parameters associated with (zt , . . . , zt−q ) . 
    In practice, the transition variable is often a priori unknown. One is, 
therefore, required to test a set of candidate transition variables and select 
the suitable transition variable based on probability values associated with 
the aforementioned hypotheses. Once the transition variable (and the 
associated transition function) is selected, one may proceed to estimate the 
related STAR model using a nonlinear optimization procedure1 . 

3 Data 

The sample consists of monthly observations between January 1982 and 
December 2011. The ENSO anomaly is represented by sea-surface 
temperature (SST) in the Niño 3.4 region, and is derived from the index 
tabulated by the Climate Prediction Center at the National Oceanic and 

    Refer to Luukkonen et al. (1988); Teräsvirta (1995); Eitrheim and Teräsvirta (1996) for 
additional details regarding the testing sequence, including remaining nonlinearity, param- 
eter constancy, and residual autocorrelation tests within the STAR modelling framework 
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Atmospheric Administration. In particular, this index measures the 
difference in SST in the area of the Pacific Ocean between 5◦ N − 5◦ S and 
170◦ W − 120◦ W , and is therefore a strong indicator of ENSO’s occurrence 
in the tropical Pacific. The Niño 3.4 monthly measure is an average of 
daily values interpolated from weekly measures obtained from both 
satellites and actual locations around the Pacific. The SST anomaly is the 
deviation of the Niño 3.4 monthly measure from the average historic 
measure for that particular month from the period 1981 – 2010. 
    Primary commodity price series are collected from the World Bank and 
the International Monetary Fund publications, publicly available on the 
respective websites. The prices are spot prices and are indicative of world 
prices of the commodities. The prices are further deflated using the U.S. 
producer price index (PPI), collected from the U.S. Bureau of Labor 
website. 

4 Results and Discussion 

I use Akaike Information Criteria (AIC) to select optimal lag length of the 
autoregressive process, as well as the lag length of the exogenous variable – 
ENSO in the price equations. The latter is done in conjunction with the 
combined nonlinearity and causality tests as described previously. Table 1 
summarizes the results of the aforementioned exercises. 
    Figures 2 – 13 illustrate combined nonlinearity and causality test results 
for the selected commodities. Figures 14 – 23 illustrate estimated transition 
functions for the selected commodities. Finally, Figures 24 – 33 illustrate 
generalized impulse-response functions (GIRFs) of the selected 
commodities. The GIRFs are crucial in deriving the causal inferences. Put 
differently, GIRFs allow us to visualize if the causality is truly an 
underlying feature of the data, or if the null hypothesis of the combined 
nonlinearity and causality is rejected merely due to nonlinearities. 
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Tables 

Table 1: Time Series Characteristics of the Commodity Prices 

Series 
ENSO 

WHEAT 
MAIZE 
SGHUM 
RICE 
SBEAN 
SMEAL 
SBOIL 
PMOIL 
RSOIL 
SFOIL 
GNOIL 
LSOIL 
CNOIL 
COPRA 
FMEAL 
CHIKN 
SWINE 
BEEF 
LAMB 
WOOL 
HIDES 
BNNAS 
ORNGS 
SUGAR 
ABICA 
RBSTA 
TEA 
COCOA 
TBACO 
COTTN 

p 
5 

2 
2 
2 
3 
2 
2 
5 
5 
3 
4 
6 
4 
7 
5 
6 
2 
3 
3 
2 
6 
2 
7 
7 
3 
3 
2 
2 
4 
5 
4 

q 
5 

 0 
 1 
 0 
 1 
 5 
 0 
 0 
 6 
 0 
 0 
-1 
-1 
 2 
 5 
 3 
-1 
 6 
-1 
-1 
-1 
-1 
 2 
 0 
-1 
-1 
-1 
-1 
-1 
-1 
 4 

d 
3 

1 
4 
4 
1 
2 
6 
3 
1 
1 
3 
− 
− 
6 
5 
− 
− 
− 
− 
− 
− 
− 
6 
3 
− 
− 
− 
− 
− 
− 
1 

G 
L 

L 
L 
L 
L 
L 
L 
L 
Q 
L 
Q 
− 
− 
L 
L 
− 
− 
− 
− 
− 
− 
− 
L 
L 
− 
− 
− 
− 
− 
− 
L 

AIC0 
 − 

-5.735 
-5.775 
-5.576 
-5.776 
-6.102 
-5.885 
-5.781 
-5.323 
-5.002 
-5.763 
-5.871 
-5.316 
-5.216 
-5.336 
-6.447 
-7.955 
-4.584 
-6.608 
-6.603 
-6.042 
-5.511 
-3.736 
-4.376 
-4.971 
-5.183 
-5.347 
-5.366 
-5.712 
-8.045 
-5.977 

 AICl 
-2.714 

-5.729 
-5.763 
-5.570 
-5.764 
-6.066 
-5.879 
-5.775 
-5.281 
-4.996 
-5.757 
-5.871 
-5.316 
-5.198 
-5.300 
-6.424 
-7.955 
-4.542 
-6.608 
-6.603 
-6.042 
-5.511 
-3.718 
-4.370 
-4.971 
-5.183 
-5.347 
-5.366 
-5.712 
-8.045 
-5.947 

AICn 
-2.850 

-5.757 
-5.841 
-5.678 
-5.902 
-6.196 
-5.924 
-5.791 
-5.331 
-5.125 
-5.779 
  − 
  − 
-5.254 
-5.385 
  − 
  − 
  − 
  − 
  − 
  − 
  − 
-3.733 
-4.403 
  − 
  − 
  − 
  − 
  − 
  − 
-5.995 

Note: p and q are selected lag lengths of the dependent and exogenous (where applicable) variables; d is 
the delay factor of the transition variable, st−d , wherein in the case of ENSO equation st = et and in the 
case of commodity price equations st = ∆12 pt . G denotes selected transition function (L for logistic and 
Q for quadratic). Finally, AIC0 , AICl , and AICn are Akaike Information Criteria respectively for the 
models without exogenous ENSO variable, linear models with ENSO variable (where applicable), and 
nonlinear models with ENSO variable (where applicable). 
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Figures 

Figure 1: Sample Transition Functions 
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Nonlinearity, Causality, and Nonlinear Causality 

Figure 2: Wheat Figure 3: Maize 

Figure 4: Sorghum Figure 5: Rice 

Figure 6: Soybeans Figure 7: Soymeal 
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Figure 8: Soybean Oil Figure 9: Palm Oil 

Figure 10: Rapeseed Oil Figure 11: Sunflowerseed Oil 

Figure 12: Groundnut Oil Figure 13: Lindseed Oil 
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Selected Transition Functions 

Figure 14: Wheat Figure 15: Maize 

Figure 16: Sorghum Figure 17: Rice 

Figure 18: Soybeans Figure 19: Soymeal 

Figure 20: Soybean Oil 
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Figure 21: Palm Oil 
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Figure 22: Rapeseed Oil Figure 23: Sunflowerseed Oil 
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Bootstrapped Impulse-Response Functions 

Figure 24: Wheat Figure 25: Maize 

Figure 26: Sorghum Figure 27: Rice 

Figure 28: Soybeans Figure 29: Soymeal 
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Figure 30: Soybean Oil Figure 31: Palm Oil 

Figure 32: Rapeseed Oil Figure 33: Sunflowerseed Oil 
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