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Abstract

This paper introduces a heterogeneous agent discrete choice probit demand model with a structural

interpretation of product choice covariance designed to overcome two hurdles in discrete choice demand

modeling. One hurdle is the curse of dimensionality implicit in covariance probit demand models and the

other hurdle is the independence of irrelevant alternatives (IIA) implicit in logit demand models. The

structured covariance probit exploits the fact that choice models rely on utility differences to achieve

identification. The utility difference structure implied by the additive random utility model is imposed

on the covariance matrix and requires just one parameter in addition to those specified in the deterministic

component of consumer utility. As an additional advantage the structured covariance probit is a better

out-of-sample predictor because it allows covariance to change according to characteristics of the market.

To estimate the model the paper develops a Bayesian estimation approach. The model also incorporates

a Dirichlet process prior over normally distributed consumer segment clusters to flexibly model demand

heterogeneity. The new model is evaluated relative to the widely used heterogeneous consumer logit

demand model. Sampling experiments confirm that the model performs well under misspecification.

An empirical analysis demonstrates that the new probit model captures realistic unrestricted switching

behavior whereas its logit counterpart exhibits restrictiveness inconsistent with the utility theory on

which the model is based.

JEL codes: C11, C14, C25, C51
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1 Introduction

An important aspect of differentiated product demand analysis is to employ a model that is adequately

flexible yet easy to identify and estimate with typically available data. Research such as McFadden (1981)

and Hausman and Wise (1978) developed discrete choice approaches, that adopt the random utility model

(RUM). Other work applied these models to construct a demand system (Allenby, 1989; Berry, Levinsohn,

& Pakes, 1995). Altogether, a probability choice model, such as the logit or probit, is specified at the

consumer level and heterogeneity is introduced as a distribution over RUM parameters then aggregated to

build a demand system. These models specify utility as a function of product characteristics, a practice that

overcomes the curse of dimensionality inherent in product space demand systems.

Researchers widely adopted the logit because is admits closed form probabilities and the introduction

of heterogeneity relaxes the well known independence of irrelevant alternatives (IIA) property at the market

level.1 The most unsavory fact is that the IIA problem still dictates consumer level behavior. The extent to

which heterogeneity ameliorates IIA at the aggregate level is an empirical question and models that suffer

from IIA at the consumer level should be used with caution and only after they have been determined to be

robust in the context of the specific empirical setting to which they are applied.

On the other hand, the probit relaxes IIA by modeling choice covariance based on the relative location

of product choices in product characteristic space. Probit probabilities require simulation of integrals over

the multivariate normal density, however computational methods have advanced to overcome this challenge.

However, if one estimates a full covariance matrix the number of elements to be estimated are directly

proportional to the number of products in the market, consequently the curse of dimensionality rears its

head.

Identification of any choice model relies exclusively on differences between consumer utilities (Train,

2003, p.11). This paper develops a new flexible probit demand specification that exploits the identification

strategy further by introducing a structural interpretation of choice covariance to the probit model. The

structural model dictates that elements of the covariance are a function of the differences between determin-

istic components of the random utility specification for each product. This approach requires the estimation

of only one additional scaling parameter regardless of the number of products in the market.

This paper also constructs a hybrid sampling technique for efficient estimation of the model. The

model and the Markov-Chain-Monte-Carlo (MCMC) simulation approach is tested in a sampling experiment

to verify their performance under proper specification and misspecification. I supply further validation of

the new probit with an empirical example that applies the model to a panel data set on household purchases
1The IIA restriction of the logit model has been well understood since Debreu (1960)
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of lemon-lime sodas in the New York City Designated Marketing Area (DMA).

One component of this research is to compare the performance of the heterogeneous agent structured

covariance probit demand model to the widely used heterogeneous agent logit demand model. In this vein I

evaluate a model’s ability to do so in a theoretically justifiable way. For example I demonstrate that IIA still

presents itself after aggregation of the logit to the market level by conducting counterfactual experiments that

compare logit elasticity estimates to those from the new probit demand model. This type of experimentation

improves our understanding about the way discrete choice demand systems behave. My results are important

to applied researchers because they demonstrate the appropriateness of logit or probit demand models for the

various types of empirical work they conduct. It stands to reason that the extent to which IIA predetermines

empirical results is extremely important to applied researchers using structural demand models to analyze

differentiated product markets. This research also provides insight on how one can test for IIA in their own

empirical analysis.

This is not the first work to place structure on a covariance probit, Yai, Iwakura, and Morichi (1997)

uses geographic distance to model correlation for transportation choices. Recent work by Lenk, Dotson,

Brazell, Otter, Maceachern, and Allenby (2009) proposes an ad hoc structure for probit covariance to capture

the the similarity effect (Tversky, 1972, 2003), and use three different distance metrics to capture product

similarity. Their conjoint study models covariance as a function of product similarity to estimate source of

volume calculations when new products are introduced.

This paper extends the models of Yai et al. (1997) and Lenk et al. (2009) in two ways. First, it

introduces the structured covariance probit to demand analysis. Second it specifies a Dirichlet process prior

on the consumer heterogeneity distribution offering more flexibility to the demand model.

The entire literature that develops and applies discrete choice demand systems is vast and not all

directly pertinent to the current discussion so I refer the interested reader to Ackerberg, Benkard, Berry,

and Pakes (2007) for thorough coverage of its evolution. The remainder of the introduction provides specific

accounts of the research lines that develop the probit, consider aggregation of choice models, and specify

models of consumer heterogeneity.

Hausman and Wise (1978) are largely credited with the introduction of the conditional (or multi-

nomial) probit model to economic analysis. Restrictions on Σ are required to ensure identification of the

model. Bunch (1991) suggests one way to identify the model, showing that if the utilities in a choice set are

differenced, all but one of the parameters of the Σ are identified. Bayesian model estimation is considered by

McColloch and Rossi (1994) who propose a Gibbs sampler that navigates the unidentified parameter space,

relying on the fact that post estimation, parameters are identified relative to one of the choices. Their ap-
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proach normalizes the unidentified draws, post process, with the posterior variance of one of the parameters.

McColloch, Polson, and Rossi (2000) suggest a Gibbs sampler to navigate the identified parameter space,

but find this identified sampler performs slower and less efficiently than the McColloch and Rossi (1994)

method. These approaches rely on the data augmentation techniques of Albert and Chib (1993) who develop

a method to circumvent evaluation of the probit likelihood. To accomplish this they show that one can draw

the latent utility variable from a multivariate normal distribution conditional of the data and parameters

and subsequently use the draws as dependent variables in a regression to estimate utility model parameters.

The aggregation properties of these market models are examined by Allenby and Rossi (1991). They

establish three conditions under which the use of aggregate logit models is theoretically justifiable. The first

is that all consumers are exposed to the same marketing mix variables. The second is that the brands under

consideration are close substitutes. And the third, is that the distribution of prices is not concentrated at

an extreme value. Their work also documents that when aggregating up to the market level the extent to

which IIA is preserved depends on the distribution of consumer tastes. They show in some cases that the

logit substitution patterns are preserved though aggregation.

Ackerberg et al. (2007) explain that obtaining aggregated demand from a distribution of household

preferences has two important advantages. One, it allows the researcher to use the same framework to study

demand in different markets, and two, heterogeneous-agent-based demand systems are readily able to analyze

the distributional impacts of policies proposed to effect goods marketed. While the representative agent

approach might generate reasonable demand estimates in one market, the advantage of aggregation from a

distribution of consumer preferences allows the accommodation of often large differences in the distribution

of demographic characteristics in one market compared to another. This avoids having an estimated model

that fits well in one market but performs poorly in another.

Appreciating the varied tastes of consumers in the demand model is not only a more realistic repre-

sentation of market demand it also improves the theoretical properties of the logit demand model. Some

researchers have observed that incorporating a flexible specification of consumer utility in the market level

logit model relaxes IIA at that level. Chintagunta, Jain, and Vilcassim (1991) use consumer-level panel data

to estimate a model that interacts demographic characteristics of the consumers. This effectively makes

the distribution of consumer preferences depend on the products they did not purchase by introducing a

nonlinear component. Well known research by Berry et al. (1995) introduces a demand model that allows

consumers to value choice characteristics differently by modeling a distribution of persistent taste shocks

across the population of consumers. They effectively exploit the same interactions as Chintagunta et al.

(1991), however they apply the contract mapping suggestion of Berry (1994) to deal with the nonlinear id-
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iosyncratic part of the model and exploit the unobserved product characteristic to estimate the model with

aggregate data. McFadden and Train (2000) show that these mixed logit models are highly flexible and in

theory can approximate any random utility model.

Bayesian semi-parametric approaches accommodate estimation of flexible density specification. The

Dirichlet process prior mixes normal densities to achieve multi-modality, asymmetries, and fattened tails. By

mixing enough normal distributions one can build any shape distribution just as if one were piling mass on a

flat surface. Tchumtchoua (2008) models the distribution of consumer preferences using a Dirichlet process

which vary with consumer demographic characteristics. Burda, Harding, and Hausman (2008) presents a

Bayesian Markov-Chain-Monte-Carlo method for estimating mixed the logit and mixed probit. The Dirichlet

process prior allows them to estimate a joint density of the model preference coefficients to reduce the

parametric restriction on the heterogeneity. Dube, Hitsch, and Rossi (2009) specify a Dirichlet process

prior for heterogeneity to rule out an alternative explanation for inertia in consumer purchase decisions.

Specifying a flexible distribution of heterogeneity eliminates critiques that cite inflexible specification of the

consumer preference distribution as the reason for spurious results testifying to state dependence in consumer

utility functions. For example if the distribution of consumer preference is flexible consumers that purchase

Mountain Dew all the time do so because they have a taste for caffeine. If this is the case then consumers

are not purchasing the product just because they did last shopping trip (inertia).

This remainder of this paper is structured as follows. Section 2 introduces the model and the demand

response structure it implies. Section 3 states the procedures for Bayesian model inference using Markov

Chain Monte Carlo simulation methods. Section 4 conducts a sampling experiment. Section 5 provides and

empirical example that demonstrates differences between the new model and its popular logit counterpart.

Section 6 concludes.

2 Model

This section introduces the new demand model. It begins by deriving the model from an underlying theory

of consumer utility closely following the exposition of Berry et al. (1995). Next it states the structural

representation. Then it derives the demand elasticities.

2.1 Utility and Demand Model

Aggregating a discrete choice model of individual behavior over a population gives one a demand system.

The utility an individual derives from a specific product is a function of individual characteristics, ζ, and a
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set of observed and unobserved product characteristic, respectively, [x, ξ]. The utility derived by consumer,

i, for product, j, is:

U(ζi, xj , ξj ; θ), (1)

θ parameterizes the utility model, including parameters that characterize the distribution of consumer char-

acteristics, and parameters that characterize the utility function, conditional on consumer characteristics.

Given preferences the consumer chooses the product that offers the highest utility.

U(ζi, xj , ξj ; θ) ≥ U(ζi, xk, ξk; θ), for k = 0, 1, . . . , J, (2)

where k indexes other products under consideration for purchase and 0 represents the no purchase outside

option. Including the outside option is essential for specifying aggregate demand as a function of observed

product characteristics. The set,

Bj = {ζ : U(ζ, xj , ξj ; θ) ≥ U(ζ, xk, ξk; θ), for k = 0, 1, . . . , J, (3)

characterizes the set of values for ζ that motivates choice of good j. Assuming that ties occur with zero

probability, the market share for good j is:

Sj(xj , ξj ; θ) =
∫
ζ∈Bj

dP (ζ). (4)

P (ζ) is the probability density function of consumer characteristics. Grouping all sj into a J-dimensional

vector, s(·), demand for each product is given by, Ms(xj , ξj ; θ), where M is the size of the market.

Under the practice that utility is additively specified, commonly referred to a the additive random

utility model (ARUM), it may be expressed as:

Uij = Vij + εij , for j = 0, 1, . . . , J. (5)

Here Vij is the deterministic component of utility and εij denotes the random component with E[εij ] = 0.

The deterministic component is typically specified as:

Vij = x′jβi + ξj . (6)

ξj is the mean unobserved component of utility for product j, and heterogeneity is introduced through
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βi. The βis are consumer i’s marginal utility for product j’s observed characteristics, xj , conditional on

consumer characteristics, ζ. An affine transformation induces the mapping of ζ into βis,

βi = β̄ + z′iδ + νi. (7)

The marginal utility parameter mean is β̄, and the deviation from the mean is generated by, observed

demographic characteristics, zi, translating parameters δ, and unobserved characteristics, νi. The unobserved

shock, νi, has a specified density that reflects the underlying distribution of the βis, namely P (ζ).

Equation 2 implies that,

U(ζi, xk, ξk; θ)− U(ζi, xj , ξj ; θ) ≤ 0, for k 6= j. (8)

Equations 6 and 7 together along with a probability model of consumer choice yields:

Pr[j] = Pr[εik − εij ≤ Vij − Vik for k 6= j] (9)

= Pr[ε̃ikj ≤ Vij − Vik for k 6= j]. (10)

This equation clearly demonstrates that only the difference in utilities matters in identifying the choice model.

This underscores the fact that correlation in choice is determined by differences in utility, and more precisely

differences in the deterministic component of utility. Assuming ε̃ikj comes from a probability distribution

F , market shares are given by:

Sj =
∫
ζ∈Bj

∫
I(ε̃ikj ≤ Vij − Vik∀k 6= j)dF (ε̃ikj)dP (ζ). (11)

If F is assumed to be the multivariate normal density then the underlying choice model is the probit, and

ε̃ ∼ N [0,Σ]. Exploiting the fact that the correlation in choice must be determined by differences in utility,

elements of the covariance matrix Σ are modeled as a function of differences in the deterministic component

of utility, Vij − Vik. Not only does this practice follow from the utility theory that underlies the model it

also ensures that the full covariance matrix is identified.

2.2 Structural Model for Choice Covariance

A utility difference can be thought of as a distance in utility space. That is, after controlling for the

observable product characteristics one expects choices to have a higher degree of correlation for products that
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the consumer considers as closer alternatives. An appealing idea is to model error correlation as a function

of the distance between the utilities a consumer gets from each product. Lenk et al. (2009) apply this idea

to a conjoint model and argue effectively this practice captures similarity effects (spacial differentiation).

The off-diagonal elements of Σ are modeled for individual i and choice set c, they take the form:

Σic =


1 · · · σ

(i)
1j

...
. . .

...

σ
(i)
k1 · · · 1

 (12)

The off-diagonal elements are the covariance between choice alternatives k and j. notice that the diagonal

elements are 1. This is because the exponential function is applied to utility differences to ensure symmetry

and positive definiteness of the matrix, and since the distance between a product and itself is 0 we know

exp(0) = 1. The specific structure I impose on elements of the covariance matrix is:

σ
(i)
kj = exp[

−dkj
exp(θi)

]. (13)

dkj is the difference in deterministic utility for choice alternatives k and j. θi scales dkj . On one hand a

consumer with a large θi views relative product utility as an important determinant of switching. A consumer

with a θi close to zero views products independent of their characteristics, just like the logit. θi is jointly

distributed with the βis under the density, P (ζ), and mapped from ζ in analogous fashion. The difference

between deterministic utilities of a choice alternatives is,

dikj =| (xk − xj)′βi | . (14)

A variation on this difference is considered by Lenk et al. (2009),

dkj =
M∑
m=1

| (xkm − xjm)βm | . (15)

This metric precisely measures the sensitivity of the consumer to product characteristics. In equation 15

utility difference is viewed as an index weighting the distance between characteristics by their marginal

utilities. This metric contrasts the first metric because is views characteristics independently rather than as

a whole, and potentially generates different covariance estimates. Going forward I refer to the two distance

metrics as the D3 and D2 metrics respectively.
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2.3 Marginal Effects

As one expects, a model that captures flexible substitution patterns improves elasticity model flexibility.

Better elasticity estimates mean more accurate analysis of a differentiated product market and therefore

more reliable measures of consumer response. Because the probit captures similarity effects at the consumer

level, an additional dimension over the random coefficients logit, the level of substitution pattern richness

relaxes any concern for IIA.

In random coefficient logit demand systems similarity effects are captured by aggregation over the

distribution of heterogeneity. The intuition is that consumers with similar sensitivity to a product charac-

teristic, such as price, have similar switching behavior. Elasticity estimates calculated by integrating over

the distribution of consumer sensitivity parameters produce “flexible” patterns of substitution. This basis

allows the model to capture similarity effects at the market level if one appreciates that the aggregate effect

has consumers buying Coke moving to Dr. Pepper because someone with a similar taste profile also chooses

it. This means that we are lining up consumer’s individual responses in a way dictated by the distribution

of sensitivities to product characteristics.

Under the logit assumption a consumer switches independent of product characteristics. Recall that

the IIA property of the model dictates switching behavior to be independent of product characteristics and

dependent only of the relative magnitudes of choice probabilities, consequently there is no similarity effect.

At the market level elasticities are constrained by the specification for the distribution of heterogeneity. This

point begs whether adequate information is contained in the data about consumer characteristics to strongly

tie consumers to the distribution. If not it stands to reason that estimates of the heterogeneity distribution

and therefore estimates of market switching behavior are not accurate. This remains an empirical question.

The consumer response can be decomposed by evoking the chain-rule for differentiation. The single

response results from a change in share which is brought about by the change in utility, and the change in

utility brought about by a change in a product characteristic. In the following utility, u, is normalized:

∂sij
∂xj

=
∂sij
∂uij

∂uij
∂xj

. (16)

For the linear RUM ∂uij

∂xj
= βi. The probit consumer share response to a change in utility is:

∂sij

∂u
(j)
ik

= φ(u(j)
ik )× Φ[· · · ,

u
(j)
ik − r

(j)
lk u

(j)
il

(1− [rjlk]2)1/2
, · · · ;R(j)

.k ], k 6= l (17)

where φ(·) is the the univariate standard normal density. Φ(·;R(j)
.k ) is a mean 0 multivariate normal distri-
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bution function with covariance matrix, R(j)
.k , equal to a differenced probit covariance Σ with out the row

and column corresponding to good k, the rlk’s are the elements of the removed vectors. The derivation of

this expression is included in appendix A of this paper. These derivatives can then be used to calculate own

and cross response, they appear respectively:

∂sij
∂xj

= βi
∑
j

∂sij

∂u
(j)
ik

[δ(j)jj ]−1/2. (18)

∂sij
∂xk

= −βi
∂sij

∂u
(j)
ik

[δ(j)jj ]−1/2.

Where the δ(j)jj s are the diagonal variance elements of the probit covariance matrix. Recognize that ∂sij

∂u
(j)
ik

is the product of a probability distribution function and a cumulative distribution function therefore it is

positive. Further recognize that δ(j)jj is a variance and therefore positive. Hence the sign of the derivative is

determined solely by the sign of the consumer sensitivity to xj , namely βi. These expressions are used in

the subsequent section to derive market elasticities for the probit demand model.

Market demand elasticity is calculated by integrating up the own-product characteristic responses of

each consumer over the distribution of preferences in the market population:

Ejj =
Sj
xj

∫
i

∂sij
∂xj

dP (ζ). (19)

Similarly the cross-product-characteristic market demand elasticity is calculated by integrating up the cross-

product-characteristic responses of each consumer over the distribution of preferences in the market popu-

lation:

Ejk =
Sj
xk

∫
i

∂sij
∂xk

dP (ζ). (20)

In practice product demand shares are set by the definition of the outside zero utility composite good.

For the logit market share definition drives cross price elasticity estimates. If the outside good share is

large, the inside good’s shares are small in comparison, generating smaller cross elasticities compared to

smaller outside good share. This means that no matter how IIA is relaxed by integrating price response over

consumers, price response is still being driven by market share definition and not by product similarity or

differences. For the probit equation 17 and 18 demonstrate that market cross elasticity is driven by product

similarity or difference. This result makes cross elasticities estimated from the probit demand model robust

to definition of the outside good, since they are not directly driven by consumer or market share.
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3 Bayesian Econometric Model Specification

Bayesian econometric model specification begins with a hierarchical design. Consider the consumer-level

likelihood, the first stage prior and the second stage prior.

• Unit Likelihood p(yi|θi)

• First Stage Prior p(θi|τ)

• Second Stage Prior p(τ |h)

Where θi parameterizes the likelihood, τ and h are hyper-parameters characterizing the prior densities of θ

and τ respectfully. The unit likelihood is the consumer-level choice model given the data and the modeling

parameters. The first stage prior is the random effects distribution, in the present case P (ζ). The second

stage prior forms the econometrician’s belief about the distribution of parameters that characterize P (ζ).

The researcher may believe that a market is made up of many segments. The first stage prior pa-

rameters may belong to a distribution that reflects a particular segment of the market. The second stage

prior is a belief about the probability process that dictates segment distributions. For example the econo-

metrician can define a mixing process to combine segment distributions generate the market distribution of

heterogeneity. A distribution over distributions and their mixing process is referred to as a Dirichlet process.

When specifying the second stage prior, the analyst is not forcing the distribution of heterogeneity to have

a specific number of segments or modes, the number of components is data driven. The joint posterior for

our hierarchical model is given by:

p(θ1, . . . , θm, τ |y1, . . . , ym, h) ∝ [
∏
i

p(yi|θi)p(θi|τ)]× p(τ |h)] (21)

This specification of the likelihood, p(yi|θi), demonstrates that the unit-level parameters are only condition-

ally independent, because τ is given conditional on h.

3.1 Dirichlet Process Prior for Mixing Normals

“Normal densities can be mixed to produce a density of any shape in the same sense that you can build

any shape mound by piling up shovels of dirt.”(Rossi, Allenby, & McColloch, 2005, p.79) In this spirit N

multivariate normal densities may be mixed to form the basis of the distribution of heterogeneity. The
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advantage of using a Dirichlet process prior is to identify clusters of data. Consider the following model:

βi = ∆′zi + ui (22)

ui ∼ N(µind,Σind)

indi ∼ MultinomialN (pvec).

ind is a variable that indicates the component distribution that parameter vector i belongs to. ind takes

a value from 1, . . . ,K. pvec is a vector of probabilities that assign weight to each of the normal densities.

zi is a vector of consumer i’s demographic characteristics. ∆ are coefficients explaining how consumer

characteristics relate to marginal utilities, βi. Moments of β’s distribution are computed by,

E[β] =
∑
k

pveckµk

V[β] =
∑
k

pveckΣk +
∑
k

pveck(µk − µ̄)(µk − µ̄)).

The conjugate prior for the “mixture-of-normals” density is given by:

vec(∆) ∼ N(δ̄, A−1
δ ) (23)

pvec ∼ Dirichlet(α)

µk ∼ N(µ̄,Σk ⊗ a−1
µ )

Σk ∼ IW (ν0, V )

N signifies a normal distribution. IW signifies an inverted Wishart distribution.2 ν0 is a scale parameter

and V is a location and scale parameter. Dirichlet signifies a directed process on the density weighting

vector pvec and has a tuning parameter α. This model is applied for the demand systems I estimate.

3.2 MCMC Approach for Bayesian Inference

The Bayesian model proposed in equation 21 does not have a well defined conditional posterior density. As

a consequence I implement the random walk Metropolis-Hastings algorithm (Hastings, 1970; Tierney, 1994;

Chib & Greenberg, 1995). The Metropolis-Hastings algorithm can, in theory, be applied to any posterior

density.3 The random walk Metropolis-Hastings algorithm performs well on high dimensional problems.
2For those not familiar with the Wishart density, it is a multivariate generalization of the gamma or chi-squared densities.
3A simple way to view this algorithm is much in the spirit of accept/reject sampling. The idea is to accept draws with a

probability proportional to the likelihood that they came from the target posterior model.
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The cost of using the random walk Metropolis is that is suffers from a higher degree of autocorrelation.

This requires the analyst to take close care when selecting the random walk step size and simulating an

appropriate amount of draws to adequately summarize the posterior density. A step size that is too large

causes the Metropolis to reject draws and consequently does not move. If the step size is too small the

researcher will be plagued by a high degree of autocorrelation. The result is that the sampler does not

navigate the posterior build-up of mass in the salient regions of the density.

One of the key properties of a random walk is that there is positive probability that the sampler

returns to a region of the density infinitely often were the sampler to go on forever. The sampler builds

mass by visiting the most probable regions more often. The random walk Metropolis that I implement uses

a Gaussian draw function. The draw function is used to make candidate draws. A candidate draw is the

old draw plus the shock drawn from the draw function, the multivariate normal density in my case. Rossi

et al. (2005) find that the use of covariance values from a first-step maximum likelihood estimate of the the

matrix works well and may be adopted as the rule of thumb. The covariance for the draw function may also

be tuned with a scaling parameter to ensure that the step size from old to candidate draws is neither too

big (causes too many rejections) or too small (does not navigate the entire posterior density).

Metropolis-Hastings algorithms can be used within and along-with Gibbs samplers. Using both is

necessary for models I sample from. Rossi et al. (2005) and others verify that hybrid samplers construct

chains that have an invariant joint posterior distribution. In this research a Gibbs sampler is used to draw

from the distribution of consumer heterogeneity, then at the consumer level I sample from choice models

that are estimated for each consumer, using the random walk Metropolis.

The estimation approach exploits the hierarchical structure of the model and makes use of a hybrid

sampler. Equations 13 and 14 illustrate that the consumer-level likelihoods for the probit model have

parameters characterizing the first moment tied up in the structure of the covariance. Along with the

consumer-level scaling parameter, all the parameters in the consumer-level likelihood must be draw at once

in a Metropolis-Hastings Step. The component distributions of the density of consumer heterogeneity use

a Gibbs sampler because the mixture of normals model that applies a Dirchlet process prior is a conjugate

model.

I compute models using the R software package for many reasons. First R is an open source software,

so it is available free of charge. For the complex recursive blocks of code, such as the probit likelihood

evaluation block, computational bottlenecks are worked out by integrating lower level computer languages.

R is well-suited for integrating lower-level computer language. The recursive nature of the simulation means

the code is loop intensive. Loop computation is extremely slow in high-level languages like R, so loop-
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intensive blocks of the code are written in C, and executed directly at the processor level. The C language

communicates directly with the processor, making for efficient computation of loop-intensive blocks, possibly

thousands of times faster.4

Because the probit model requires one to evaluate integrals over multivariate normal densities the

evaluation of the likelihood requires simulation of the integral in equation 3.14. I use the GHK method

to approximate the integrals, a method attributable to Keane (1994), Hajivassiliou, McFadden, and Ruud

(1996). The GHK methods requires one to truncate normal draws to intervals implied by the multivariate

normal density we wish to integrate over. This is equivalent to integrating over rectangular regions of the

density. The number of draws required to evaluate the likelihood is 50 to 100. The GHK estimates of the

normal probabilities have
√
n convergence. Consequently increasing the number of draws does not improve

estimate accuracy in a significant way. The chance that a probability estimate would cause the wrong choice

to be predicted is not likely. The product mistakenly predicted would need to be almost equivalent to the

true predicted choice in the eyes of the consumer.5

3.3 Evaluation of Model Performance

Bayesian Decision Theory (BDT) is employed to determine which choice model from a set of many is most

appropriate for the data at hand. For the current model selection task the action is to determine the “best

fitting” choice model or in other words the most probabilistic model. The empirical measure that I use to

determine the model with minimal loss is called the log marginal density. One chooses the model for which

the log marginal density is largest. Since the metric is a probability, the log transformation results in a

negative number, hence chooses the model whose log marginal density is closest to zero.

4 A Sampling Experiment

A Sampling experiment demonstrates the practical behavior of the models and the MCMC samplers that

simulate from them for known data generation processes (DGPs). The underlying process that generates

data arising from any market is precisely what we intend to capture when we take a demand model to market

data for analysis. If one has confidence in the ability on their estimation or simulation routine to recover the

DGP then one only needs to evaluate whether their model is reasonable given the data. If MCMC simulators
4Computer estimation codes are available from the author upon request.
5The computer used to execute these routines has a quad core 3.16 GHz processor and 16 GB of RAM. The routine to draw

from the posterior of the heterogeneous agent logit requires 90 minutes of computing time to complete fifty thousand draws for
a data set consisting of 300 consumers who each have 50 choice sets of three different products. The routine that draws from
the posterior of the heterogeneous agent structured probit model takes approximately 3600 minutes, roughly two and a half
days.
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successfully recover the true densities of the model parameters then they are appropriate for market analysis.

This section is divided into two sub-parts. One explains the data experiment I conduct, the other interprets

the results.

4.1 Explanation of Experiment

The experiment data is generated from two different processes. The first DGP is a logit model with a

distribution of heterogeneity composed by mixing three tri-variate normal components. The second DGP

simulates data from a structured covariance probit using distance metric three and a heterogeneity distribu-

tion that mixes three tri-variate normal components. The fictional market that generates this data consists

of three products. Each products’ characteristics are captured by a fixed component that includes unob-

served product characteristics, and a variable component that captures an observed product characteristic.

Marginal distributions for three specified marketing mix sensitivity parameters reveal consumer marginal

preferences for the characteristics. Consumers choose the product that maximizes their utility. This can be

expressed as:

yi = max(β1,iF1,j + β2,iF2,j + β3,iC1,j) for y and j = 1, 2, 3. (24)

y is the revealed choice of the consumer. The first heterogeneity parameter β1,i has a single mode and is

centered about zero. The second heterogeneity parameter, β2,i, has a marginal distribution that is bimodal.

The modes occur roughly at -4 and -1. The third parameter also has a bimodal distribution, its modes occur

at -8 and -2.

Fifty purchase occasions for 300 consumers are simulated in this experiment. An example of a single

choice outcome for a single consumer appears as

y = 3 X =


0 0 2.5

1 0 2.9

0 1 3.1

 (25)

where y indicates the choice with an assigned number, and X is a matrix of the characteristics for the

options in the choice set. Additionally, 2 characteristics are generated for each consumer. Both consumer

characteristics used in the experiment are continuous and imaginably measure income or age.

I specify nine models for analysis. Three different probability models are paired with three differ-

ent models for the distribution of heterogeneity. The three probability model renditions I evaluate are:

The heterogeneous agent logit, and the structured covariance probit applying both distance metrics. The
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three models for the distribution of heterogeneity are a one, three, and seven component mixture-of-normal

distributions.

All models apply diffuse priors. The priors on the parameters for the logit and probit models are

equivalent, but for the θ parameter. Recall that θi models the degree of consumer-specific perception

of product similarity in the probit error-covariance matrix. There is a prior on the number of normal

components, again I will use one, three, and seven components. There is a prior on the mean for each

component, these values are set to zero. The prior on the precision matrix of the normal component is 1e-6.6

The prior parameters for the inverted Wishart, conjugate distribution for the covariance of the heterogeneity

parameter, are ν and V . The ν is set to 7 and V is set to ν ∗ I4. The priors on the ∆s in the β regression

are mean, ∆̄, and precision matrix, Ad, these are set to zero and 1e-6∗I4 respectively. The standard diffuse

setting for the alpha parameter, used to tune the Dirichlet Process over the normal components, is set to 5.

Recall from Chapter 4 that MCMC simulation requires us to set various parameter values that tune

the sampler. I set the random walk scaling parameter, s, by using a common rule of thumb (Roberts &

Rosenthal, 2001).

s =
2.93√
nvar + 1

A fractional likelihood weighting parameter, w, is set to 0.1. This parameter is used to estimate the starting

values for the βs. The estimates for the starting values come from maximum likelihood estimates for the logit

model. The number of simulated draws for probit likelihood evaluation, r, is set to 50. Increasing the number

of simulation draws for the probit likelihood does not increase precision in a significant way since the GHK

simulation method has
√
n convergence. A thinning parameter, keep, is set to 5. This thinning parameter

tells the bookkeeping block of the simulation routine to keep only every fifth draw. This practice reduces the

autocorrelation inherent in the Random-Walk-Metropolis Sampler. Finally, the number of MCMC draws, R,

is set to 50,000 which requires approximately two and a half days of computing time for the probit models

and one and a half hours of computing time for the logit model. Computing time can be further reduced on

a machine capable of parallel processesing by dividing up the number of draws evenly over the processors.

The only problem with this technique is that you also inherent parallel burn-in periods. The burn-in period

is amount of draws it takes to free the simulated posterior of influence caused by its initial conditions.
6The precision matrix is simply the inverse of the prior covariance matrix. The precision matrix is is an information matrix

in the classical sense.
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4.2 Interpretation of Results

This section presents point estimates for each parameter estimated by each probability model and for a one

component heterogeneity distribution. It also presents marginal densities for each parameter estimated by

each probability model assuming a single component heterogeneity distribution. Then it displays how well

the more flexible, Dirichlet process prior models recover the true marginal densities. Finally it evaluates the

fit of each model for both DGPs.

Point Estimates for Single Component Heterogeneity Models

The left side of Table 1 records the posterior marginal mean and joint posterior covariance for the

single-component model parameters. All moment estimates are statistically significant in a classical sense.

The numerical standard error (n.s.e.) is a normalizing statistic to use if one wishes to conduct a classical

hypothesis test. Standard deviation (s.d.) is simply the standard deviation of the posterior parameters over

the consumer population. Moment estimates are most appropriate for discussion of single mode marginal

posterior densities. Because there are 300 consumers posterior marginal densities, each one is not presented.

Table 1: One Component Posterior Moment Estimates
Logit DGP Probit DGP

True values Logit D2 Probit D3 Probit True values Logit D2 Probit D3 Probit

β1 -0.002 -0.033 0.020 0.022 0.008 -0.200 -0.082 -0.070
s.d. 0.066 0.052 0.052 0.110 0.064 0.065

n.s.e 0.001 0.001 0.001 0.001 0.001 0.001
β2 -2.448 -2.447 -1.450 -1.454 -2.225 -3.640 -1.845 -1.800

s.d. 0.115 0.063 0.063 0.160 0.070 0.070
n.s.e 0.002 0.001 0.001 0.003 0.002 0.002
β3 -5.020 -4.906 -3.160 -3.179 -4.502 -6.910 -3.519 -3.550

s.d. 0.190 0.079 0.078 0.280 0.083 0.081
n.s.e 0.003 0.002 0.001 0.005 0.003 0.003

θ - - -3.620 -8.317 0.349 - 0.269 -0.130
s.d. - - 0.958 0.892 - 0.117 0.111

n.s.e - 0.114 0.106 - 0.007 0.006
Covariance

1,1 1.057 0.689 0.697 3.050 1.099 1.125
1,2 -0.078 -0.023 -0.023 -0.420 -0.125 -0.109
2,2 3.062 0.911 0.915 5.720 1.094 1.072
1,3 -0.050 0.002 0.001 0.060 0.034 0.052
2,3 4.012 0.419 0.421 6.510 0.146 0.144
3,3 8.297 1.365 1.378 16.800 1.205 1.184
1,4 - 0.001 0.000 - 0.025 0.048
2,4 - -0.010 0.001 - -0.067 -0.041
3,4 - -0.017 0.000 - -0.209 -0.222
4,4 - 1.019 1.019 - 1.176 1.186

Model Fit
LMD -8088 -8077 -8094 -5993 -5871 -5936

Hit Prob 75.18 77.18 77.18 79.33 83.55 84.00
Source: Authors calculations from sampling experiment

Table 1 also documents estimates of the θ parameter, which is best interpreted after the exponential

transformation, vis á vis equation 13. This parameter models the degree of consumer-level model error

independence or similarity effect, hence it does not appear in the logit model. Since the data has been

generated by a logit model, we expect the exponential transformed value of θ to be small relative to a probit
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generated counterpart.

The appropriate test to inform whether the parameter is picking up significant differences in the

similarity effect, is to compare the moment estimates of θ from the logit DGP, -3.62 and -8.317, to the

estimates of theta from the probit DGP, 0.263 and -0.13. The estimates are clearly larger for the probit

DGP by orders of magnitude, which is consistent with greater error dependance across households. This test

assumes that the estimates of the β parameter moments are constant across data experiments and experiment

estimates. This assumption is reasonable in the current setting since both data sets are generated with the

same true βs.

Market-level switching behaviors are accounted for in the structured covariance probitl, as opposed to

the logit that suffers from (IIA). However, In the flexible logit model these effects are only accounted for by

the distribution of heterogeneity. Therefore, if the structured covariance probit is used on data from a logit

generation process, the extent of spread in the true parameter density is potentially dampened since choice

probabilities are improperly modeled as a function of error dependence, i.e. the probit is more sensitive then

the logit. The moment estimates documented in columns D2 probit and D3 probit of Table 1 reveal that

point estimates of the probit parameters are in fact shrunk toward zero, the mean of the prior. Greater prior

influence on the posterior distribution of the parameters supports the notion that the information contained

in the data is being spread over a larger set of parameters for the probit models. The information is not

being lost, it is being used for identification of θ. The more that information from the data is spread for

parametric identification, the more influence that information from the prior has on the posterior density.

Posterior Marginal Densities for Single Component Heterogeneity Models

Figure 1 displays the marginal posterior for β1, under the logit data generation process, over the

300 simulated consumers, for the true distribution and the three model estimates. The distribution of

heterogeneity for the models in Figure 1 are specified to have one multivariate normal component, the

typical specification for the heterogeneity distribution in the literature. Visually, there is no substantial

difference in the estimate for the marginal posterior density of β1. Table 1 records point estimates for the

mean, standard deviation, and covariance of the model parameters for the single component models under

both data generation processes.

Next we move on to the multi-modal β2 parameter. Figure 2 displays marginal posterior densities

for the β2 parameter simulated from each choice model. Each model assumes single component normal

heterogeneity. The logit model estimates do a better job at picking up the location of the density, moreover

the shoulders of the logit’s marginal density estimate contain both modes of the true density. The probit

model estimates are similar to each other. They locate the mean of the true density, however they are
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Figure 1: β1 Single Component, Logit DGP
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Figure 2: β2 Single Component, Logit DGP
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tighter about that mean, suggesting as hypothesized, greater sensitivity of the probit to changes in product

characteristics. Also, more Bayesian shrinkage could be occurring in the probit than the logit estimates.

Bayesian shrinkage is the tightening of the posterior density. This tightening is attributable to the addition

of information in the prior to that already contained in the data and the error model (likelihood). The

location of the likelihood moves toward the prior mass and the scale of the likelihood shrinks.

The structured covariance probit possesses an innate ability to predict switching behaviors in the data

not attributable to observed choice characteristics. A glance at Figure 3 reveals that the logit model fits the

distribution of heterogeneity best. This is possibly due to variation in the consumer distribution capturing

similarity effects, whereas it is picked up in the probit model by θ.

Figure 3 displays the marginal densities of β3 for each model and the true distribution. Once again,

we see smaller scale in the marginal densities simulated from the probit models. Shrinkage is evident in the

logit results, however not nearly to the extent of the probit results. The moment estimates appearing in

Table 5.3 verify these facts. The mean β3s are clearly closer to zero for the probit models than the logit

model, and have smaller deviation. Again we see that the logit model fits the distribution of heterogeneity

best.

The exponential transformed marginal posterior densities of θ appear in Figure 4. It is important

to keep in mind that θ serves to provided flexibility to the probit covariance matrices with respect to an

individual consumer’s choice error correlation. Figure 4 indicates that the values of theta for both models

are close to zero. We do not expect these distributions to be the same for the two models because they scale

the distance metric which is the key differentiating factor between the two models.

Figure 5 plots the marginal densities for the θs simulated under the probit DGP. The true distribution

of θs appear at the top. Remember that the probit DGP assumes the second covariance structure. There is

a small difference between the θ distribution for the D2 and D3 models. Both do a nice job at picking up the

true distribution. If we compare these densities with the densities displayed in Figure 4 we see the values of

θ are typically much larger. This is consistent with the point estimates for θ in Table 1. The most important

finding in the results about θ is that variation in consumer choices over time provides enough information

to identify the distribution of θs. This fact gives us confidence that this model will perform on data that

comes from consumer purchase histories.

Analysis of Model Performance on Recovering the Heterogeneity Distribution

Figure 6 displays results from the logit and the D3 probit with 3 and 7 mixing components. The first thing

to notice is whether we specify the distribution of heterogeneity to have 3 or 7 components, the posterior

appears to display the same distributional features. The reason that the posterior is not forced to pack in all
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Figure 3: β3 Single Component, Logit DGP
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Figure 4: θ Single Component, Logit DGP
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Figure 5: θ One Component Probit DGP
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Figure 6: Comparison of Component Specifications

7 components is because the simulation process detects only 3 components, and uses just 3 to capture the

true joint density. The Dirichlet process effectively places negligible probability weight on 4 of the component

densities. This feature of the Dirichlet process prior makes its use very attractive. It lets the data speak for

posterior modality rather than dogmatic models that constrain the joint density to a single mode.

Figure 6 also shows that the logit does a slightly better job than the probit models at picking up

the distribution of heterogeneity. The logit captures the modality of the True parameter density as well as

its spread, its scale is also larger as we would expect. Here we might conclude that the probit seems to

be effected by Bayesian shrinkage, although the modes are captured. The middle right diagram of the β3

distribution has a spike in the left mode. This spike may indicate that the sampler got stuck on a value in

that neighborhood, repeating draws because the step size of the random walk was too large. One needs to

be careful when taking the model to an application. Various random walk step sizes could be tried, however

increasing the number of draws and increasing the value of the thinning parameter does a great deal to

improve the performance of a simulation.
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Model Fit

Table 2 records the Newton-Rafferty estimates of the log-marginal-densities for the models simulated.

In choosing the model with the largest (closest to zero) log marginal density estimate it appears that the

two probit models outperform the logit almost uniformly. The table also documents hit probabilities for

the same models. Results in this table testify that the probit models are superior at predicting the choice

outcome even when data is generated from a logit model of choice. The strength of the probit model rests

on its ability to model variation in choice by simply adding a single parameter. This is why it outperforms

the logit on data generated from a logit DGP. The probit model’s superior predictive power is a result of

the additional parameter and flexible specification of the error covariance. In the marginal densities we

have observed above, the logit does a very nice job at recovering the shape, location, and spread of the

parameter distributions. That being said, even the flexible probit did not capture all the salient features

of the distribution of heterogeneity for β3. This result suggests that the probit model fits the data better,

while the logit model fits the distribution of heterogeneity better; possibly because information in the data

is being used to identify θ.

Table 2: Log Marginal Density and Hit Probabilities
Logit DGP Probit DGP

Normal Componenets Normal Componenets
one three seven one three seven

Logit LMD -8088 -8076 -8070 -5993 -5996 -5990
Hit Prob 75.18 75.18 75.18 79.33 79.44 79.42

D2 Probit LMD -8077 -7857 -7855 -5871 -5877 -5825
Hit Prob 77.18 77.14 77.29 83.55 83.47 83.32

D3 Probit LMD -8094 -7926 -7987 -5936 -5675 -5927
Hit Prob 77.18 77.18 77.24 83.72 83.72 83.41

Source: Author’s calculations from Sampling Experiment

Table 2 tells the effect a flexible specification of the heterogeneity distribution has on model perfor-

mance. Across all models and for each DGP, model flexibility improves log marginal density. As for hit

probabilities, adding flexibility also improves predictive power. The probit is more flexible than the logit and

predicts better without enriching the distribution of heterogeneity. Two important findings about within

sample performance of the models can be deduced from these results. One, we see that flexible specification

of the logit improves predictive power and two, the probit marginally benefits from the more flexible spec-

ification. Adding components results in smaller values for the log marginal density, as Table 2 documents,

due to over-parametrization.

Three standards dictate model suitability. One, is the mean and variance from the parameter estimates

are attainable, two, is the distribution of consumer heterogeneity recoverable, and three, is the parameter,

θ, that models the degree of similarity effects identified by variation in consumer purchase behavior and
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consumer characteristics. These standards determine the suitability of the models for demand analysis.

Results testify that only models which specify a flexible Dirichlet process prior are suitable for recovering

the distribution of heterogeneity. I find that only the two probit models can recover consumer level similarity

effects and varying degrees of similarity across the population of consumers. These facts suggest that the

two probit models are the most suitable of the three for demand analysis.

5 Empirical Application

To illustrate the properties of each model tested in the sampling experiment I apply them to a real data

set on household purchases of lemon-lime carbonated soft drinks. Price elasticities of demand are computed

from model estimates to conduct a counterfactual experiment that demonstrates how each model behaves

when the market changes. This analysis informs one about how market definition or changes to products in

the market impact equilibrium demand sensitivity.

The data is from the New York City Designated Marketing Area (DMA). It records lemon-lime

carbonated soft drink purchase histories for a representative sample of households in the metropolitan area.

The time frame of the data covers three years beginning in June of 2006 and ending in May of 2009. I select

a sub-sample of households purchasing un-cola in the New York City DMA. Un-cola is widely defined as a

lemon-lime soda variety. I choose four un-cola products to analyze. These products were by far the post

popular during the time period under consideration.7

Table 3 records the sample moments for each model assuming a normal-distribution of heterogeneity

and the optimal Dirichlet-process distribution of heterogeneity. Once again standard deviations of the

sample distributions appear below parameter means and numerical stand errors below them. At the bottom

Newton-Rafferty log-marginal-density estimates appear. These guide our model choice.

One will notice that logit parameter estimates are larger in absolute value that probit ones. Recall

that this is because the probit model is more sensitive to changes in product characteristics. The reason is

that the structured covariance probit model reacts in a chain fashion though the system of choice correlations

each depending on consumer sensitivities to characteristics. On the other hand the logit operates with the

independent assumption, this means that only a direct effect on the probability is internalized by a change

in one of the characteristics, therefore the magnitude of the marginal utility parameters must be larger to

capture the total effect.

Since point estimates are less informative about model parameters than sample densities I consider
7This data has been made available by the Food Marketing Policy Center at the University of Connecticut.
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Figure 7: Posterior Marginal Densities for D2 Probit Draws
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Figure 8: Posterior Marginal Densities for D3 Probit Draws
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Figure 9: Posterior Marginal Densities for Logit Draws
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Table 3: Moment Estimates of Posterior Parameter Densities
Models � Logit Probit D2 Probit D3

Parameter DP comp � One Optimal One Optimal One Optimal

Price mean -3.200 -3.600 -2.053 -1.127 -0.904 -0.760
s.d. 1.220 3.146 1.373 1.412 0.516 0.880

n.s.e. 0.064 0.158 0.079 0.045 0.028 0.035
Uncola1 mean -4.200 -4.837 -2.233 -2.255 -2.254 -2.278

s.d. 0.260 3.028 0.493 0.492 0.493 0.500
n.s.e. 0.014 0.136 0.027 0.027 0.027 0.027

Uncola2 mean -4.300 -4.921 -2.240 -2.264 -2.259 -2.260
s.d. 0.300 3.479 0.502 0.508 0.505 0.500

n.s.e. 0.013 0.159 0.023 0.023 0.023 0.022
Uncola3 mean -4.300 -4.482 -2.243 -2.266 -2.258 -2.620

s.d. 0.300 1.013 0.515 0.523 0.517 0.510
n.s.e. 0.013 0.043 0.025 0.025 0.025 0.025

Uncola4 mean -4.300 -4.698 -2.251 -2.285 -2.262 -2.283
s.d. 0.320 2.115 0.517 0.530 0.518 0.520

n.s.e. 0.015 0.096 0.021 0.022 0.022 0.022
θ mean - - -5.879 -6.750 -9.407 -7.749

s.d. - - 0.650 1.086 1.449 1.470
n.s.e. - - 0.039 0.069 0.090 0.094

LMD -3002.9 -2979.6 -2603.8 −2600.3? -2618.3 -2614.0

Source: Author’s calculations
Note: ? indicates the most probabilistic model

density histograms of the parameters from the Dirichlet-process prior models in Table 3. Figures 8-10 display

histograms for each of the parameter densities from each model. The densities are labeled according to the

variable they measure sensitivity to. These histograms reveal the multi-modality of the parameter densities.

The multiple modes identify market segments. They may be interpreted as a segments that are regular

un-cola drinkers and a segment that are not. These figures document that very few consumers are actually

characterized by the mean parameter since the red bar marks the density mean reported from Table 3. Green

bars delineate 95% confidence intervals within which most consumers tastes reside.

Figures 11 and 12 display density estimates of own price elasticities for logit and D2 probit demand

models. The top four histograms for each figure show the densities when the data set is made up of households

who make ten or more purchases during the sample period. The bottom four histograms for each figure show

the densities when the data set is made up of households who made twenty or more purchases during the

sample period. These densities reveal no significant difference from their counterpart. This suggests that

there are no major systematic differences in the price sensitivity for those who are more regular purchasers,

testifying to the robustness of my results and therefore subsequent analysis. Now I use my estimates to

analyze the competitive properties of the models.

5.1 Analyzing Market Counterfactuals

In this subsection I examine the validity of the models under consideration for differentiated product demand

analysis. Most prominently I consider how implementation of a consumer-level logit model, that suffers from
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Figure 10: Own Price Elasticity Density Estimates for Logit: For Data Selected of Households with Ten and
Twenty or more purchases
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Figure 11: Own Price Elasticity Densities for D2 Probit: For Data Selected of Households with Ten and
Twenty or more purchases
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the IIA property, influences measures of competition implied by demand estimates. I also provide arguments

for adopting the structured-covariance probit instead. First I explain a test of product market definition.

Then I present a simple counterfactual that reveals how logit and probit demand models determine price

elasticity before and after a multi-lateral perturbation in utility from inside good consumption. Then I

analyze the results of the experiment and comment on the use of each model for competitive analysis.

To validate each model I begin with a hypothesis about how price sensitivity should change when

outside good share is reduced due to a multi-lateral equi-sized fixed increase in the intercept value of the

inside goods. This is equivalent to augmenting the product market by taking away a good that is not in

competition with inside goods. For instance assume I take way the option of purchasing a bicycle as an

outside good. Bicycles are a high value choice and one has no reason to believe they are in competition with

un-colas. I would be taking away a more valuable good, effectively making inside goods more valuable relative

to the outside options, which no longer include a bicycle. As such our demand model should yield inside

good cross price elasticity estimates that are robust to market definitions that include irrelevant outside

goods.

Given that the value of inside goods increases relative to the outside option, robustness implies the

following two conditions be met. First, since the goods are now uniformly more valuable they will become

less elastic. Second, since the relative value of inside goods has not changed there should be only a small

reduction in cross-price sensitivity solely because their respective demand curves become steeper. This

establishes two standards for judging model estimates of price sensitivity. One, cross-price elasticities should

be marginally smaller, and two, own price elasticities should become significantly larger.

Tables 4-6 report price elasticity matrices from each probit, and the logit demand models before and

after a multi-lateral fixed increase in inside good utility across consumers. In Tables 4 and 5 one will observe

that the two standards established above are met. Own price elasticities are larger across all products and

Cross price elasticities are slightly smaller.

Table 6 reports the experiment’s outcome for the logit model. Here one will notice that cross-price

elasticities are higher and own-price elasticities are only slightly larger. This attests to an important fact. IIA

dictates that switching is proportional to market share and introduction of heterogeneity does not completely

overcome it. Because market share increased for inside goods relative to the outside goods, share went up

across the board. It should be no surprise that cross-price elasticities went up since they are a multiplicative

function of share. This fact is not overcome by introducing a distribution of heterogeneity. Results for Tables

4-6 suggest that structured covariance probit models are more robust to specification of the outside good

than logit models are. Logit cross-price effects are very sensitive to a market definition and therefore they
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Table 4: Market Definition’s Effect on Probit Price Elasticities: A Test of IIA
Before Unilateral Utility Increase

Model: D3 Probit Uncola1 Uncola2 Uncola3 Uncola4

Uncola1 -3.55 0.3546 0.357 0.406

Uncola2 0.342 -3.591 0.347 0.385

Uncola3 0.331 0.336 -3.639 0.403

Uncola4 0.394 0.39 0.423 -4.076

Outside 0.04 0.042 0.045 0.048

Source: Author’s calculations

After Unilateral Utility Increase
Model: D3 Probit Uncola1 Uncola2 Uncola3 Uncola4

Uncola1 -2.853 0.323 0.326 0.368

Uncola2 0.309 -2.842 0.314 0.346

Uncola3 0.302 0.307 -2.905 0.364

Uncola4 0.363 0.36 0.387 -3.293

Outside 0.048 0.051 0.054 0.057

Source: Author’s calculations
Note: Change is for share in a row against the price in a column

should be used with great caution.

Results from Tables 4 and 5 verify that structured covariance probit models are most appropriate

for determination of relevant product markets. Therefore any competitive analysis based on estimates

of demand should adopt a structured covariance probit modeling approach in lieu of a logit one. The

structured covariance probit’s ability to model similarity effects, can retain stable estimates of inside good

price sensitivity regardless of goods included in the outside analysis. This is because under many market

specifications inside good probabilities are from the lower tail of the distribution function determining share,

i.e. goods have small market share relative to the outside option. The structured covariance probit’s behavior

is more stable than that of the logit in the tails because it accounts for covariance in choice.

These findings suggest that structured-covariance probit models do well in determining whether goods

belongs to a product market. For example, goods can be added or taken away from the analysis and the

model will use its structure to determine whether the presence of the good in question raises equilibrium

price. This type of analysis is common for market definition in antitrust proceedings. These tests of relevant

product market definition rely on determining whether a small but significant non-transitory increase in

price (SSNIP) is profitable for the hypothetical monopolist. If such an increase is not profitable more goods

are removed from the analysis until the price increase becomes profitable. This type of analysis relies on

dependable elasticity estimates. Results from this subsection suggests that the heterogeneous-consumer logit
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Table 5: Market Definition’s Effect on D2 Probit Price Elasticities: A Test of IIA
Before Unilateral Utility Increase

Model: D2 Probit Uncola1 Uncola2 Uncola3 Uncola4

Uncola1 -5.293 0.517 0.527 0.569

Uncola2 0.504 -5.399 0.594 0.556

Uncola3 0.511 0.592 -5.651 0.577

Uncola4 0.564 0.566 0.590 -5.850

Outside 0.061 0.064 0.068 0.069

Source: Author’s calculations

After Unilateral Utility Increase
Model: D2 Probit Uncola1 Uncola2 Uncola3 Uncola4

Uncola1 -3.944 0.457 0.467 0.500

Uncola2 0.455 -4.091 0.534 0.499

Uncola3 0.447 0.514 -4.120 0.500

Uncola4 0.495 0.496 0.516 -4.303

Outside 0.078 0.082 0.087 0.088

Source: Author’s calculations

should never be used for such an analysis and that a more reasonable modeling approach would be to use

the structured-covariance probit.

Results from Table 3 indicate that the D2 Probit demand model with a flexible Dirichlet-process prior

was the most probabilistic model making it the favored one in a Bayesian decision analysis. The D3 Probit

also fared well. Results from the Bayesian decision analysis also testify that including the Dirichlet-process

prior to flexibly model the distribution of heterogeneity improves all three models. Numerical standard

errors, sampler draw- and autocorrelation function- plots indicated that samplers for each of the models

performed well.

The probit models offered up the most realistic option as a demand models. They posses the most

realistic patterns of substitution unhindered by IIA, as in the logit. This result was bolstered by estimates

of a rich distribution of varying consumer perception to the degree of product differentiation (or similarity),

driven by the θ parameter. This result is consistent with the hypothesis that consumers vary in the way

they differentiate products. A flexible model like the structured covariance probit appreciates the differences

whereas the logit and any demand system that views products as symmetrically differentiated does not.

Finally, the probit models appear to be more robust to definition of the outside choice, further supporting

the case for adopting the probit model for demand analysis. I now move to the next chapter where I

summarize the findings of the research and make suggestions for future extensions of it.
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Table 6: Market Definition’s Effect on Logit Price Elasticities: A Test of IIA
Before Unilateral Utility Increase

Model: Logit Uncola1 Uncola2 Uncola3 Uncola4

Uncola1 -3.22 0.043 0.043 0.048

Uncola2 0.043 -3.116 0.041 0.044

Uncola3 0.044 0.041 -3.151 0.046

Uncola4 0.048 0.043 0.045 -3.342

Outside 0.044 0.042 0.042 0.046

Source: Author’s calculations

After Unilateral Utility Increase
Model: Logit Uncola1 Uncola2 Uncola3 Uncola4

Uncola1 -3.155 0.106 0.105 0.119

Uncola2 0.107 -3.05 0.1 0.108

Uncola3 0.107 0.101 -3.08 0.113

Uncola4 0.118 0.106 0.11 -3.26

Outside 0.109 0.104 0.104 0.113

Source: Author’s calculations

6 Conclusion

This paper introduced a new structured covariance probit demand model. This model fully relaxes the

independence of irrelevant alternatives property inherent in logit choice models. It does so by modeling

choice covariance with a structural formulation that relies on the utility differences. The Dirichlet-process

prior modeled - multi-modal, skewed, and heavy tailed - distributions of consumer tastes. A hybrid sampler

recovered the posterior density of the structured covariance probit demand system parameters. The sampling

experiment confirmed that the models and algorithms recover the posterior distribution of a known data

generation process successfully. An empirical application to the New York City un-cola market demonstrated

the structured covariance probit’s ability to estimate consumer switching behaviors in comparison to the

popular heterogeneous-consumer logit. Findings here certify that the logit model should be used with caution,

particularly as caution applies to specification of the outside good. Future extensions of this research might

explore alternate structures of the choice correlation model or develop an estimation approach to use the new

model for examination of aggregate data. Empirical analysis could apply the structured covariance probit

model to questions about market definition, the introduction of new goods, optimal advertising, and merger

analysis.
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A Appendix: Probit Elasticity Derivation

Derivation of the probit elasticity follows Hofacker (1990). First I define difference utilities, then I show the

form of the probit derivative with respect to a choice characteristic.

A.1 Defining Difference Utilities

The probability that product i is chosen is:

Si = Prob[ui > uj ] (26)

= Prob[ui − uj > 0]

= Prob[ν(i)
j > 0].

In the third line of this equation I define ui − uj = ν
(i)
v therefore I will introduce a difference operator for

each brand, I call it Λ(i). This operator subtracts each other brands from the ith. It is a n by N matrix

where N is the number of products and n = N − 1. For example, Λ(1) is:

Λ(1) =



1 −1 0 · · · 0

1 0 −1 · · · 0

· · · · · · · · ·

1 0 0 · · · −1


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Apply this operator to u to produce ν(i) = Λ(i)u. This vector is normally distributed based on the model

error assumption with:

E[ν(i)] ≡ ν̂(i) = Λ(i)û = Λ(i)x′β

V [ν(i)] ≡ Ψ(i) = Λ(i)ΣΛ(i)′

Standardize ν(i). Define ∆(i) = diag[Ψ(i)], then transform the covariance matrix of difference utilities.

R(i) = [∆(i)]−1/2Ψ(i)[∆(i)]−1/2,

and expectation of difference utilities

a(i) = [∆(i)]−1/2ν̂(i).

A.2 Probit Derivatives w.r.t. Product Characteristics

Differentiating the probit probability with respect to product charecteristics can be broken into two parts

according to the chain rule as:
∂si
∂x′

=
∂si
∂u(i)′

u(i)

∂x′

The u(i)

∂x′ is obviously β. The ∂si

∂u(i)′ is a bit less obvious and takes the form, Poon and Lee (1987) show:

∂si

∂u
(i)
j

= φ(u(i)
j )× Φ[· · · ,

u
(i)
k − r

(i)
jk u

(i)
j

(1− [rijk]2)1/2
, · · · ;R(i)

.j ], k 6= j.

Where:

R
(i)
·j = [∆(i)

·j ]−1/2Ψ(i)
·j [∆(i)

·j ]−1/2,

and the ·j operator indicates that row and column j are left out of the matrix. This approach calculates

Ψ(i)
·j under the assumption that ν(i) has been held constant, or “partialed out.”(Graybill, 1976)

Then we measure own response:

∂si
∂xi

= β

n∑
j=1

∂si

∂u
(i)
j

[δ(i)jj ]−1/2, (27)

and cross response
∂si
∂xj

= −β ∂si

∂u
(i)
j

[δ(i)jj ]−1/2 (28)
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That completes the derivation.�

B Appendix: Description of Data Used in the Empirical Analysis

In this appendix I present descriptive statistics on the variables used in demand analysis for un-cola consumers

in the New York City DMA. These variables include demographics, market prices, and market brand choice

shares. First I present a table summarizing demographic variables. Then I present a table summarizing prices

and market brand shares for the four un-colas under considers in my demand study. I consider households

that purchased un-cola ten or more times during the three year period. I analyze the robustness of demand

results by estimating the best models with a data set that records transactions for households that purchased

un-cola more than twenty times. This test of robustness verifies whether there is selection bias resulting

from a systematic difference in the purchase shares for more regular consumers of un-cola.

Table 7: Descriptive Statistics for Demographics used in Analysis
Variable Mean Std. Dev. Min Max

Income 58k 35k 5k 110k+

Family Size 2.81 1.34 1 9

Race White Black/African Asian Other

Households 360 84 24 41

Percent 70.73 16.5 4.72 8.06

Total Households 509

Source: A.C. Nielsen Home-scan

Table 5.7 provides descriptive statistics for household demographic characteristics used to model the

distribution of parameters measuring marginal dis-utility of income and tastes for products. Their are 509

households under consideration in my analysis. The average household incomes range from 5,000 to 110,000+

dollars and the average is roughly 58,000 dollars. The average household has 2.81 members. The race in

most households is white with black/African coming in distant second.

Table 5.8 documents descriptive statistics of prices and purchase shares for the un-colas I analyze.

The prices are for 12oz servings, the size of typical soda can. Shares are simply the proportion of times

the product was purchased during the three years observed. These are not volume or unit market shares.

They should be considered brand choice market shares. Marketers are interested in brand choice because

is reflects the proliferation of their product and sensitivity of product adoption to promotion and pricing

strategy. As such, marketing strategy is often shaped by the brand choice share metric, I cite as evidence

the popular conjoint analysis field of marketing research (Carroll & Green, 1995). Conjoint analysis is a
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statistical technique used in marketing research to determine how people value different features that make

up a product based on choice outcomes.

Table 8: Descriptive Statistics for Price and Brand Share
Variable Product Mean Std. Dev. Min Max

Price (cents per 12oz)
Uncola1 0.253 0.359 0.012 2.621

Uncola2 0.192 0.295 0.012 1.628

Uncola3 0.160 0.215 0.014 1.098

Uncola4 0.167 0.298 0.007 2.090

Market 0.193 0.292 0.007 2.621

Share Count Inside Share Total Share

Uncola1 157 25.2 1.73

Uncola2 157 25.2 1.73

Uncola3 154 24.72 1.69

Uncola4 155 24.88 1.71

Outside Choice 8,464 93.14

total 9087

Source: A.C. Nielsen Home-scan

In Table 5.8 one will note that Uncola1 is the highest priced product at approximately 25 cents per

can and leads in the number of purchase occasions along with Uncola2 at 157 times. Uncola3 is the lowest

priced cola and purchased the fewest number of times. The outside choice is defined as any carbonated soft

drink purchase made by a household under consideration. This choice is a zero utility choice. All utility

parameters are identified relative to the outside carbonated soft drink option. Next I present results from

models estimated with this data.
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