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The Distributional Behavior of Futures Price Spread Changes: Parametric and
Nonparametric Tests for Gold, T-Bonds, Corn and Live Cattle

Abstract

The distributional behavior for futures price spread changes is examined through

parametric and nonparametric tests on four different commodities: corn and live cattle,

and gold and T-bonds with two different sample sizes.  Data are examined for selected

periods, stable (1992) and unstable (1988).  Remarkably different results were found over

commodities, time period, and sample size.  Actual spread changes for the smaller sample

size of gold and T-bonds and of corn produced more normal distributions as intervals

were widened from daily to weekly, while all live cattle spreads for actual changes were

normally distributed.  However, the larger sample size of both gold and T-bonds and the

relative spread changes for both corn and live cattle did not converge to a normal

distribution.  The ‘best fit’ distribution was tested nonparametrically on all daily spread

samples, and the logistic distribution prevailed, which supported the results of

nonnormality from parametric distributional tests.
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The Distributional Behavior of Futures Price Spread Changes: Parametric and
Nonparametric Tests for Gold, T-Bonds, Corn and Live Cattle

INTRODUCTION

The distribution of commodity futures price changes has been widely examined.

Several studies (Houthakker, 1961; Mann and Heifner, 1976; Cornew, Town and

Crowson, 1984; Blattberg and Gonedes, 1984; Hall, Brorsen, and Irwin, 1989) suggest

that the distribution of price changes is not normal, but is leptokurtic.  However, there

exist relatively few studies investigating the nature and the distributional properties of

futures price spread (fps) changes.  Identifying the relationships between prices of various

futures contracts is crucial in understanding spread trading in futures markets.  Spread

trading is an arbitrage activity between two futures contracts, and it provides a

mechanism for traders to allocate risk among themselves.  Any risk transferred from the

spot market to the futures market must be absorbed therein (Billingsley and Chance,

1988).  These authors suggest that spread trading induces risk-averse futures traders to

participate in the futures market, and it supplies liquidity to hedgers because spread

positions generally carry less price risk than net positions in the market.  Without spread

trading, the futures traders who are willing to absorb the risk would supply all of the price

insurance demanded by hedgers.

Poitras (1985, 1990) examined the distributional properties of gold fps for 2

different intervals and found the distribution of daily gold fps was not normal, similar to

the distribution of futures prices mentioned above, but that fps became more normally

distributed as intervals were widen from daily to weekly.  In general, the importance of

the distribution of futures price or futures price spread changes arises from the fact that
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most performance norms require that the changes are drawn from a common distribution,

usually a normal distribution, with a finite variance.  These performance norms typically

include measurements of the mean and some measure of variability or risk (Sarassoro,

1985).  Thus, examining the probability distribution is important in the analysis of futures

prices and futures price spreads since often distributions do not have a mean and finite

variance.  Futures market participants, especially speculators, can be successful at using

the market to the extent of their knowledge of the probability distribution of the price, and

can evaluate the risk through the distribution of the changes.  Then, the selection of

statistical methods is important in the analysis of distribution.  In this study, not only is

the distribution of changes in fps itself examined, but also the characteristics of the

distribution, skewness and kurtosis, will be analyzed.  For this reason, the LM test is the

best method to investigate the normality of changes in fps because it contains the

skewness and kurtosis properties as well as optimum asymptotic power properties and

good finite sample performance (Bera and Jarque, 1987).

Although the distribution of changes in futures price or the distribution of changes

in futures price spread has generally been found to be nonnormal, no study has identified

the actual distribution for those variables.  Knowing the appropriate distribution may

benefit traders in making appropriate trading decisions and in understanding the risk in

the futures market.

Therefore, using parametric and nonparametric distributional tests, this paper

extends Poitras’ (1990) analysis of the distribution of changes in fps to additional

commodities and data, and identifies the ‘best-fit’ distribution for changes in fps.
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Specifically, we will examine the fps for gold, Treasury bonds, corn, and live cattle, and

deliberately examine data characterized by low and high volatility.

By comparing the results of this paper with those of Castelino and Vora (1984)

and Poitras (1990), we will also be able to observe whether the futures price spread

volatility has a positive relationship with the spread length.  Increasing spread length

increases risks, which means the possible existence of compensating risk premiums

(Castelino and Vora, 1984).

This paper is structured as follows: a brief discussion of previous research is

provided in the next section; the statistical techniques, selection of data and the spread

model are presented in Sections III and IV; detailed results follow in section V; section VI

contains general summaries, and concluding remarks.

LITERATURE REVIEW

Various studies have analyzed characteristics of spreads and the distributional

aspects of futures prices or of stock returns.  While many studies have examined the

distributions of changes in price levels and returns of stocks, the distributions of futures

price spreads have rarely been examined.  Poitras (1985, 1990) might be the first

researcher who identified the evidence of convergence of the distribution of futures price

spread to normality for three sample periods out of five when the differencing interval

was widened from daily to weekly.  Poitras (1990) showed the 1982, 1983, and 1985

Dec.-June fps significantly converged to symmetric normal distribution without excess

kurtosis for both actual and relative changes in futures price spreads when the spread

interval was widened from daily to weekly, but the 1981 and 1984 fps did not converge to
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a normal distribution.  He concluded that more “normal” distributions were produced by

widening the differencing interval from daily to weekly.

Regarding the distributional effect of spread length, the shorter the spread length,

the more likely that Poitras’ (1990) daily results are peaked and fat tailed.  Also, futures

price spreads’ volatility was found to increase directly with the increment of spread

length.  This result was consistent with the results of Castelino and Vora (1984) who

analyzed the effect of spread length on spread volatility for agricultural commodities, and

found strong evidence that the volatility of spreads increases with its length.  They

concluded that wheat, characterized by low variance, would be the most mature and

efficient commodity futures market of those examined because low variances on spread

would be expected in a well arbitraged market.

Monroe and Cohn (1986) tested market efficiency by investigating whether

implied interest rates in gold spreads deviated substantially enough from Treasury bill

interest rates from time to time to allow traders to earn profits from speculating on

changes in the difference between two rates.  They examined the frequency distribution of

all differences between the implied gold interest rate and the T-bill rate, and found that

this distribution exhibited a wide dispersion, and the differences between the gold and T-

bill rates were frequently negative providing significant evidence of market efficiency.

A sizable body of empirical research observes that futures price changes for short

time intervals are not normally distributed, but exhibit a high degree of leptokurtosis

relative to the normal distribution, and suggests the stable Paretian or a mixture of normal

distributions as reasons for the observed leptokurticity.  Hall, Brorsen, and Irwin (1989),

and  Cornew, Town, and Crowson (1984) found that the distribution of futures prices of
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agricultural, financial, and metal commodities was leptokurtic and hence not normally

distributed.  Also, Officer (1972) and Hsu, Miller, and Wichern (1974) used stock returns

to describe the distribution of rates of returns on common stock.  They found that the

returns had some properties of a stable process.  The distributions have fat tails compared

to the normal distribution.  While the above studies suggested nonnormality in futures

prices and stock returns, Hudson, Leuthold and Sarassoro (1987) found normality for

commodity futures price changes.  According to their results, futures price changes were

found to be random, indicating that futures prices adjust efficiently to information, i.e.,

when the distributional aspect is considered, their results indicated a move toward

normality.

Bera and Mackenzie (1986) investigated through a simulation study whether the

LM test and other available tests could detect nonnormality when the alternative tests

belonged to the stable family.  They concluded the Wald test was most effective in

detecting nonnormality.

METHODOLOGY

Historical financial and futures prices and stock returns appear to be nonnormal

but exhibit a high degree of leptokurticity.  Few studies have tested the normality of

futures price spreads, except Poitras (1985, 1990) who tested gold spreads.  This study

extends his work by utilizing the LM test to see whether futures price spread changes for

two agricultural and two nonagricultural commodities follow and / or converge toward a
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normal distribution when widening the differencing intervals from daily to weekly1.  In

addition, skewness is used to assess symmetry of the distributions and kurtosis for

peakedness and fatness of tails.  Potential heteroskedastic problems will be examined by

using the variance of futures price spreads.  The change in variances will be related to

futures price spread volatility or nonstationarity.

Also, the optimal distribution of changes in fps for these four commodities will be

found using “Bestfit” software, which tests goodness-of-fit of data.  This program has 25

built-in distributions, and it determines the most appropriate distribution by describing

the data (Palisade Corp. 1994).  The best probability distributions for 6 daily fps are

decided by a chi-square test in this program.  The most frequent fitted distributions over

sample fps will be discussed.

LM Test

In this procedure, the log-likelihood function is maximized subject to a constraint

and a test statistic is constructed from the Lagrange multiplier (LM) for the constrained

maximization (Ramanathan, 1993).  If the constraint is true, then the slope of log-

likelihood function is zero.  The LM test tests whether the slope of the log-likelihood

function, evaluated at the restricted estimate, is significantly different from zero.

Bera and Jarque (1987) suggest two aspects of the LM test as being useful.  First,

this test has asymptotic power characteristics (asymptotically efficient) including

maximum local asymptotic power on the basis of small sample properties.  Second,

                                                          
1Widening the differencing intervals from daily to weekly eliminates an abundance of zeros and small
changes.  To examine monthly intervals is not possible because of the small number of observations at these
wide intervals.
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computation of this test is easy: to calculate the LM statistic, only estimation under the

null hypothesis is required.

Assume that there are N independent observations on a random variable x, and

that

testing the normality of x is of interest.  The LM test statistic is given by:
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where µ  is the unknown population mean of xi , µ = E xi[ ]  and x ui i= +µ , and

c c c0 1 3, ,  and  are parameters.

Here, the hypothesis of normality, H0:c c1 2 0= = , is tested.  By using

θ µ θ θ θ θ1 0 2 1 2 1 2= ′ = ′ = ′ ′( , ) , ( , ) , ( )c c c  and , we have a score test which is known as the

Lagrange multiplier test.  Using these and equation (2), the LM test statistic (1) can be

obtained.  Under this null hypothesis, f ui( )  follows a normal distribution, and LM is

asymptotically distributed as χ( )2
2 .  If the value of LM is greater than the appropriate

significance point of χ( )2
2 , then H0 is rejected.  However, if the value of LM is close to

zero, then the observations can be said to follow a normal distribution.  It is possible to

obtain as good an approximation as desired to the distribution of LM.

Skewness and Kurtosis

The LM test statistic (1) contains two properties of the normal distribution;

skewness and kurtosis.  If a vector of x follows a normal distribution, which has mean

(µ ) and variance (σ2), then
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Equation (3) tells us that the third central moment is zero for the normal

distribution.  This moment is used to measure skewness.  If a continuous density function

f xi( )  has the property that f a f a( ) ( )µ µ+ = −  for all a, where µ is the mean of

distribution, then f xi( )  is said to be symmetric around mean.  If f xi( )  is a discrete

density function and has the property that probability Pr( ) Pr( )u ui i〉 = 〈0 0 , then f xi( )  is

symmetric too.  If b1  in LM test statistic is not equal to zero, normality would be
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rejected.  If b1  is positive, the distribution is skewed to the right, and if it is negative,

the distribution is skewed to the left.  The ratio of the skewness to its standard deviation

can be used to construct tests of significance based on the Student's t table.  The standard

deviation is as follows:

 SDs=[ ( ) ( )( )( )]6 1 2 1 3 1 2n n n n n− − + + .

Equation (4) tells us that the fourth central moment of a normal random variable

is 3 times the square of its variance.  A random variable with a fourth moment larger than

3 times the square of the second moment has thicker tails than a normally distributed

random variable, which is referred to excess kurtosis, or as leptokurtic (Davidson and

Mackinnon, 1993).  In the kurtosis measure test, if b2 in the LM test statistic is not equal

to 3, then normality would be rejected.  If b2 is greater than 3, the observation has thicker

tails (leptokurtic distribution) than a normally distributed random variable.  On the other

hand, the observation with b2 less than 3 has thinner tails (platykurtic) than a normally

distributed random variable.  The ratio of the kurtosis to its standard deviation can be

used to construct test of significance based on the Student's t table.  The standard

deviation is as follows:

 SDk=[ ( ) ( )( )( )( )]24 1 3 2 3 52 1 2n n n n n n− − − + + .

By observing b1 and b2, then fps can be examined as to whether they departure

from normality.

Chi-Square Test

The χ 2  test of goodness-of-fit is defined as a measurement of how well the

sample data fit the hypothesized probability density function (Palisade Corp., 1994).  For
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a continuous distribution on a certain interval, the hypothesis is tested against the

alternative that the distribution is not uniform.  The chi-square statistic is as follows:

Q
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.  If the null hypothesis is

true, the expected number of observations of type i  is npi
0  and is smaller than when the

null hypothesis is not true.  That is, when the magnitude of equation (5) is large, the null

hypothesis is rejected.  If the null hypothesis is true, the distribution is uniform, and the

sample size n is large, then Q will have approximately a χ 2  distribution with k-1 degree

of freedom (DeGroot, 1989).  If Q is greater than the critical value, then the H0 is

rejected.  DeGroot (1989) indicate whenever the value of npi
0  is not too small, the χ 2

distribution will be a good approximation.

In the program of Bestfit, a lower chi-square value indicates a better fit.  Hence,

the distribution which has the lowest value of chi-square statistic will have the best fit

among 25 different functions or distributions.  However, one weakness of this test is how

the intervals should be selected.  In some situation, different conclusions can be reached

(Palisad Corp., 1994) from the same data depending on how the intervals are specified.

DATA AND MODEL

Daily and weekly (Friday) closing futures prices were used for the contracts of

agricultural commodities (corn and live cattle) and nonagricultural commodities (gold,
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and T-bonds)2.  Coefficients of variation were calculated for every year from 1986 to

1995 to determine extremes in stability and instability.  The highest price volatility was

observed for the sample from February 4, 1987 to June 1, 19883.  The sample from

December 28, 1990 to June 1,1992 exhibits the lowest price volatility4.  Meanwhile, a

smaller sample size was necessary for corn and live cattle due to their seasonal

characteristics and the shorter duration of their futures contracts.  The data used in this

case are May 26, 1988 to November 30, 1988 for unstable period and April 7, 1992 to

November 30, 1992 for stable period.  To be consistent with our study of the agricultural

commodities, we also examined gold and T-bonds with the same (smaller) sample size as

for corn and live cattle. Each sample begins with the starting date of the deferred contract

of the spread and ends two weeks prior to the first delivery date on the spread’s nearby

contract.

For T-bonds, a relatively high coefficient of variation was tested for 1992 and a

low coefficient of variation for 1988.  This behavior is opposite from that of the other

commodities, however, the same periods (1988 and 1992) are used for T-bonds for

consistency.

In defining futures price spread (fps), three spread lengths are examined

depending on the delivery months available: in the case of gold, one year (Dec.-Dec.), six

months (Dec.-June), and two months (Dec.-Feb.); for T-bonds, one year (Dec.-Dec.), six

months (Dec.-June), and three months (Dec.-Mar.); for corn, one year (Dec.-Dec.), seven

                                                          
2Futures price data of corn, live cattle, gold, and T-bonds are CBT, CME, COMEX, and CBT prices
respectively.  These are provided by the Office for Futures and Option Research at the University of
Illinois.
3 For consistency, the sample size for gold and T-bonds is similar to that used by Poitras.
4 Sample sizes are indicated in the tables of results.
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months (Dec.-July), and three months (Dec.-Mar.).  For live cattle, instead of using one

year (Dec.-Dec.) spread length, six months (Dec.-June), four months (Dec.-April), and

two months (Dec.-Feb.) are examined because of usually lack of data beyond one year

forward.  Hence, total of six daily and six weekly sample futures price spreads for each

commodity will be examined.

For simplicity, a futures price spread is defined as the difference between two

futures prices, and a spread trade comprises a short position in one contract and an equal

number of long positions in another contract.  Specifically, a futures price spread can be

defined as following:

F(t,T); the futures price at time t for deferred delivery at time T

F(t,N); the futures price at time t for nearby delivery at time N

fps(t) = F(t,T)-F(t,N).

Normality of futures price spread will be checked by estimating the distributional

parameters, skewness, kurtosis, variance, and by examining the estimated parameters

when the differencing interval is widened from daily to weekly.  The following

transformations for examining distribution of futures price spreads (fps) will be used.

Difference of futures price spread: DPFS = fps(t+1) - fps(t),

and rate of change in futures price spread: RFPS
t t)

(t)
=

+ −fps fps

fps

( ) (1 5
.

RESULTS OF STATISTICAL TESTS

The main results of normality tests are presented in the following two sections.

The first section contains the results of the parametric distributional test on changes in fps
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(DFPS and RFPS), and the second section contains the results of nonparametric

distributional test on changes in fps.

Parametric Distributional Tests

Gold and T-Bonds

Poitras (1990) analyzed gold fps from 1981 to 1985, without classifying stable and

unstable periods, whereas we selected two representative periods, stable (1992) and

unstable (1988).  We also analyzed the commodities with two different sample sizes.  The

same parametric distributional tests (LM, skewness, and kurtosis) are performed as in

Poitras’ study but expanded to four commodities: gold, T-bonds, corn, and live cattle6.

These tests determine whether the values of LM, skewness, and kurtosis are significantly

different from zero, zero, and three respectively, which are the best signals concerning

normality.  In order to examine the distribution, we must assume that the variance of the

underlying futures price spread changes is finite.  Results are summarized in Tables I

through IV.

Gold fps changes in Table I do not converge to normal distribution when spread

intervals are widened from daily to weekly as determined in the LM, skewness, and

kurtosis tests.  Only one spread length of each transformation (1992 Dec.-Dec. DFPS and

1992 Dec.-June RFPS) does not reject the null hypothesis of a normal distribution for

weekly interval, but rejects the null hypothesis for daily interval in these three tests.

Meanwhile, five spreads for each DFPS and RFPS do reject the null hypothesis of

                                                                                                                                                                            
5 RFPS is the same as log difference between two fps.
6 LM statistic is asymptotically distributed as χ 2 with 2 degrees of freedom.  Consequently χ( )2

2

 
is

performed by comparing the value of LM to 4.61, the critical value at the 10% level of significance.  The
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normality, showing significantly high coefficients of the LM test for both daily and

weekly intervals: three for unstable period and two for stable period.  These results imply

that changes in gold fps are neither normally nor lognormally distributed for both daily

and weekly intervals.  This feature is usually due to significantly negative skewness

combined with fat tails, which is consistent with Poitras (1990) who showed the

distributions of five daily and two weekly fps changes are negatively skewed and fat

tailed.  Our results of skewness test in Table I show that the distributions of five daily and

one weekly DFPS and five daily and two weekly RFPS are significantly negatively

skewed, that is, to the left with a long tail in that direction.  The kurtosis tests are similar

with the distributions of all cases being significantly leptokurtic except two weekly

intervals during the stable period (Dec.-Dec. DFPS and Dec.-June RFPS).  The degree of

leptokurtosis decreases as intervals are widened from daily to weekly in all cases.  Thus,

the combination of significant asymmetry and leptokurtosis causes the distributions of

gold fps not to generally converge to a normal distribution when intervals are widened

from daily to weekly, a result dissimilar to Poitras(1990).

As in the results of gold fps changes, the trend of convergence to normality has

not been found for most cases of T-bonds’ fps changes when differencing intervals are

widened from daily to weekly as shown in Table II.  However, an interesting contrast was

found.  All T-bonds’ fps changes for stable period (1988) reject the null hypothesis of

normality, producing significant coefficients of LM, skewness, and kurtosis.  Meanwhile,

two DFPS (Dec.-Dec. and Dec.-Mar.) and one RFPS (Dec.-Dec.) for the unstable period

                                                                                                                                                                            
student’s t distribution is used by comparing the values of skewness and kurtosis to around 1.282 at the 10
% significance level.
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(1992) do converge to symmetric normal distribution without excess kurtosis as intervals

are widened from daily to weekly.

Nonnormality of T-bonds in the LM test is due to the combination of skewness

and fat tails.  However, the direction of skewness is totally different between DFPS and

RFPS.  The distributions of most DFPSs are skewed to the left while those of most

RFPSs to the right. T-bonds’ fps changes also exhibit significant leptokurtic distribution

as in the gold fps changes except three 1992 weekly intervals (Dec.-Dec. DFPS, Dec.-

Mar. DFPS, and Dec.-Dec. RFPS).  From the above results, both daily and weekly

changes in T-bonds’ fps are neither generally normally nor lognormally distributed.

Unlike Poitras (1990), who showed three out of five gold fps converging to

symmetric normal distribution without excess kurtosis, this study found that, in general,

for both unstable and stable periods gold and T-bonds do not produce more normal

distributions as determined in the LM, skewness, and kurtosis tests for the widened

interval.  Since there is no consistent sample periods between Poitras’ and this study, it

appears that the distributional behavior of spread changes over time for nonagricultural

commodity fps.

To be consistent with the subsequent analysis on corn and live cattle, parametric

distributional tests are performed on gold and T-bonds with a smaller sample size, and the

results are summarized in Tables III and IV.  Strikingly different results are found from

the larger sample size.  Most cases of gold and T-bonds either converge to normal

distribution by widening intervals from daily to weekly or are normally distributed for

both intervals.  In the case of gold in Table III, all of DFPS, except 1992 Dec.-Feb., and

four out of six of RFPS (all of 1988 and one for 1992) converge to symmetric normal
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distribution without excess kurtosis when widening intervals from daily to weekly as

determined in LM, skewness, and kurtosis tests.  A similar situation is found in T-bonds

in Table IV.  All case of 1992 DFPS and four cases of RFPS (two for 1988 and two for

1992) converge to symmetric normal distribution without excess kurtosis as intervals are

widened from daily to weekly.  In addition, all case of 1988 DFPS and two cases of RFPS

are normally distributed for both intervals.  As in the larger sample size of gold and T-

bonds, nonnormality is usually caused by the combination of skewness and fat tails.  One

feature different in the smaller sample size is that leptokurtosis is found as the only

reason causing nonnormality in four gold DFPS out of seven cases of nonnormal

distribution, one gold RFPS out of eight cases, and three T-bond RFPS out of four cases

of nonnormal distribution.  For example, the distribution of 1992 daily gold Dec.-Feb. in

Table III is symmetric with the value of –0.017 for skewness test but has fat tails with the

value of 7.896 for kurtosis test resulting in the high LM value.  Unlike the larger sample

size of gold and T-bonds, negative skewness does not prevail among the smaller sample

size of gold and T-bonds.

The distributional behavior of gold and T-bonds with two different sample sizes

display very disparate results.  First, for the larger sample size, gold and T-bonds did not

converge to normal distribution for widening intervals.  This distributional behavior

appears to change over the sample period since Poitras (1990) and this study do not

analyze overlapping data and have dissimilar results.  Secondly, the distributional

behavior of gold and T-bonds is very sensitive to the sample size. With the smaller

sample size, gold and T-bonds converge to symmetric normal distributions without

excess kurtosis as intervals are widened from daily to weekly.  For the larger sample size,
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the combination of negative skewness and fat tails was the main reason for nonnormality

while either leptokurtosis alone or the combination of skewness and fat tails was often

found as the reason for nonnormality when it occurred in the smaller sample size.

In addition to the distributional behavior, we can examine the effect of spread

length on distribution as well as volatility.  It is expected that there would be negative

correlation between the spread length and nonnormality in daily results because daily fps

would be dominated by zeros for shorter spread lengths, and hence the distribution would

appear peaked and fat tailed.  Again, discrepancy is detected between the two sample

sizes.  The results of gold and T-bonds with the larger sample size in Tables I and II

partially support this expectation in gold DFPS and 1988 RFPS, and T-bonds 1988 RFPS.

For instance, the kurtosis test results for 1988 daily T-bonds’ RFPS show the coefficients

of 11.766, 14.977, and 16.321 as the spread lengths moves from Dec.-Dec., Dec.-June to

Dec.-Mar., so that the shorter the spread lengths, the more likely the daily results appear

to be peaked and fat-tailed.  This type of result occurred in three out of four situations for

gold.  Meanwhile, nonagricultural commodities with the smaller sample size in Tables III

and IV do not show any consistent pattern of negative correlation between spread length

and nonnormality except for 1988 gold.

Castelino and Vora (1984) studied the spread volatility, and they found that fps

volatility increased with spread length, as did Poitras(1990).  However, the spread length

effect of volatility in this study is only partially supported for both sample sizes.

Volatility decreases as spread lengths are shortened only for both daily and weekly gold

1992 fps, but not for gold 1988 fps nor any T-bonds results in the case of the larger

sample size.  For example, the standard deviation of 1992 gold DFPS in Table I shows
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0.243, 0.146, and 0.140 for daily interval and 0.594, 0.340, and 0.328 for weekly as

spread lengths are shortened, while all 1988 gold fps has the largest volatility during

Dec.-Feb. which is the shortest spread length, and less volatility during Dec.-Dec.  This

might be due to the fact that 1988 was apparently unstable so that risk is high regardless

of the spread length.  The standard deviations of T-bonds’ fps in Table II fluctuate as

spread lengths are shortened for both periods.

In the case of the smaller sample size, the positive relationship between spread

lengths and volatility holds for DFPS of both gold and T-bonds, but not for RFPS of both

commodities.  As an illustration, the standard deviation of 1988 weekly gold DFPS in

Table III has the values of 0.90, 0.48, and 0.20 as spread lengths are shortened from Dec.-

Dec., Dec.-June, to Dec.-Feb.  However, 1992 weekly T-bonds RFPS in Table IV

possesses the same values of 0.02 for those three spread lengths.

Corn and Live Cattle

As with gold and T-bonds in the smaller sample size, changes in corn and live

cattle fps show substantially different results from the larger sample sizes of gold and T-

bonds in case of DFPS, but more similar results in case of RFPS.  These results are

presented in Tables V and VI.  Four out of six cases of corn DFPS in Table V converge to

the normal distribution without skewness and excess kurtosis as intervals are widened

from daily to weekly, and they show a significant discrepancy between stable and

unstable periods.  All three cases of corn DFPS converge to the normal distribution in

stable period (1992) as determined in the LM, skewness, and kurtosis tests, while only

one case (Dec.-Dec.) converges in unstable period (1988).  Meanwhile, as in the larger

sample size of gold and T-bonds, five corn RFPS out of six transformations reject the null
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hypothesis of normal distribution in the LM test for both daily and weekly intervals.  This

nonnormality is due to the combination of skewness and leptokurtosis.  However, unlike

the distributions of gold and T-bonds with the larger sample size which were skewed to

one direction (gold fps and T-bond DFPS to the left, and T-bond RFPS to the right), the

distributions for corn are skewed in both directions without any consistent pattern.  As an

illustration, the distributions of 1988 daily corn RFPS are skewed in both directions with

values of 10.867, -1.655, and 6.779.

The normality tests on live cattle fps changes demonstrate a unique pattern of

results between the DFPS and RFPS as demonstrated in Table VI.  While most of weekly

DFPS LM test values are larger than those for daily, the results of test statistic do not

reject the null hypothesis of normal distribution for both intervals.  As determined in LM,

skewness and kurtosis, all of both daily and weekly DFPS are distributed as symmetric

normal without excess kurtosis.  However, we can not say that live cattle fps converge to

normal distribution because the coefficients of LM test increase as intervals are widened

from daily and weekly.  This result may stem from the fact that live cattle, as opposed to

the other three commodities analyzed, is nonstorable, meaning there is less linkage

between different futures contracts, creating a more normal distribution of spread

changes.

Meanwhile, all the distributions of RFPS for live cattle, except 1988 weekly Dec.-

April, are skewed and fat tailed, resulting in nonnormality for both intervals.

Nevertheless, most of the coefficients of the three tests are reduced as intervals are

widened from daily to weekly.  Thus, both daily and weekly live cattle futures price

spreads are normally distributed but not lognormally.  The nonnormality of RFPS for both
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intervals is usually caused by positive skewness combined with fat tails like T-bonds

RFPS in Table II.  One daily (1988 Dec.-June) and two weekly intervals (1988 Dec.-June

and Dec.-Feb.) are found to have negatively skewed distributions.

In short, from the LM, skewness and kurtosis tests, we found a discrepancy

between two transformations of corn and live cattle futures price spreads.  In the case of

DFPS, there exists a trend of convergence to the normal distribution for corn, and there

exists a normal distribution for both daily and weekly data for live cattle.  Nonnormal

distributions exist for both commodities’ daily and weekly RFPS.  These results are

substantially different from those of gold and T-bonds with the larger sample size that

rejected the null hypothesis of normal distribution for most of DFPS and RFPS, but

correspond fairly well with those of gold and T-bonds with the smaller sample size.

The distributional effect on spread lengths is partially supported in case of corn

and live cattle fps changes in Table V and VI.  The negative distributional effect on

spread lengths is found in two cases of corn and one case of live cattle.  As the spread

lengths are shortened, 1988 daily DFPS and weekly RFPS for corn and 1992 daily DFPS

for live cattle appear more peaked and fat tailed as shown by the kurtosis tests.

Interestingly, there is positive correlation with spread length for 1992 daily and weekly

RFPS for corn and 1988 daily DFPS for live cattle.

From the results of the volatility test on corn, the values of standard deviation of

each spread length show a decreasing tendency from the unstable (1988) period to the

stable (1992) period.  For example, daily corn DFPS has volatility values of 5.19, 1.99,

and 0.85 for 1988 and 1.81, 0.69, and 0.36 for 1992 as the spread lengths are shortened

from Dec.-Dec. to Dec.-Mar.  This reduction in volatility over sample periods is the
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evidence of the variance nonstationarity as Poitras (1990) mentioned.  However, the

degree of reduction in the standard deviation values of live cattle is not significant over

sample periods.  Daily DFPS has the standard deviation value of 0.41 in 1988 Dec.-June,

and is reduced to 0.21 in 1992 Dec.-June, which means the volatility of DFPS for live

cattle is relatively stable over the sample period.

The test of volatility for corn and live cattle fps changes as spread lengths change

yields somewhat different result from nonagricultural commodities. This test on corn and

live cattle fps produces results similar to the findings of Castelino and Vora (1984) and

Poitras (1990).  The standard deviation increases with spread length in all cases of corn

fps changes and for live cattle DFPS for both periods.  As an example, the standard

deviation of 1988 corn DFPS in Table V shows 5.19, 1.99, and 0.85 for daily interval and

15.36, 5.93, and 1.98 for weekly interval as spread lengths are shortened.  This exception

to this pattern is RFPS for live cattle.

Nonparametric Distributional Tests

From the previous section, all tests of daily fps results in nonnormal distributions

which are usually skewed, and peaked and fat tailed except live cattle DFPS.  The

distribution of daily fps is of interest to spread traders as they manage risks and make

decisions about participation in the futures market utilizing such knowledge.  Hence, it is

valuable to know the correct distribution for changes in futures price spreads.

Nonparametric distributional tests are performed to find out the best fit

distribution of the changes in four commodities’ fps over time7.  The lowest value of chi-

                                                          
7 Table VII summarizes daily DFPS of each commodity only.
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square test designates the most appropriate distribution among 25 functions built in the

program of “Bestfit” (Palisade Corp.,1994).

Table VII summarizes the best fit distributions of changes in daily fps and their

2χ  values with n-1 degree of freedom for each sample period and each fps.  The logistic

distributions prevail for corn, gold and T-bonds, which are known to be more peaked and

fat tailed than the normal distribution.  This finding is consistent with the leptokurtosis,

which is one reason causing daily futures price spread changes not to be normally

distributed as reported in the previous section.  Four cases of both corn and the larger

sample size of gold, all cases of the smaller sample size of gold and the larger sample size

of T-bonds, and three cases of the smaller sample size of T-bonds do not reject the

coefficients at 5% level of significance and are distributed logistically.  For these three

commodities, all one year spread lengths are logistically distributed except the smaller

sample size of T-bonds for 1988.  In addition, seven cases of six and seven months spread

lengths over three commodities are distributed logistically too.  Student’s t distribution is

occasionally detected as the best fit distribution.  Corn Dec.-July for 1988 and the larger

sample size of gold Dec.-June for 1988 are the case of student’s t distribution.  For two

and three months, logistic distributions are accepted as best fit distributions four times;

one for corn, one for the smaller sample size of gold, and two for the larger sample size of

T-bonds.  Meanwhile, the distributions of gold with the larger sample size for two months

spread (Dec.-Feb.) are found as triangular and logistic distributions for unstable and

stable periods, respectively.  However, the 2χ  values are significantly higher than critical

values at 5% level of significance.  Thus, none of 25 distributions built in the program is

appropriate for the larger sample size of gold two months’ spreads.  For corn three
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months spread (Dec.-Mar.), logistic and normal distributions are detected as the best.

This result is consistent with the Table V, which showed LM test values 392.95 and

2.638 for 1988 and 1992 respectively.  In this LM test, we did accept the value of 2.638

for stable period as the normal distribution, and it is confirmed that 1992 corn three

months spread is normally distributed by nonparametric distributional test.

For live cattle DFPS, the normal distribution was not rejected in the parametric

distributional test in the previous section, and is found as the best four times in the

nonparametric distributional test.  The logistic distribution is detected as the best for the

other two spreads, 1988 Dec.-June. and 1992 Dec.-Feb..  However, the normal

distribution can not be ignored because it is found as the second best with the values of

13.129 and 7.487 respectively, which should be accepted at 5% level of significance too.

In general, the logistic distribution prevails as the best among commodities from

nonparametric distributional tests.  It may not be the absolutely correct distribution of

commodities, however, this distribution as detected in nonparametric tests describes the

distribution of commodities better than other distributions.

SUMMARY

Parametric and nonparametric distributional tests have been performed on corn

and live cattle futures price spread changes in one sample size, and gold and T-bonds

futures price spread changes with two different sample sizes.  These are examined for

selected stable and unstable periods.

Poitras (1990) found that the distributions of both transformations (DFPS and

RFPS) for gold futures price spreads have a tendency of convergence to normality in all
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tests for three out of five sample periods when differencing intervals are widened from

daily to weekly.  Widening the interval is expected to remove zeros and smaller changes

in data, which then produces a more normal distribution.

The distributional behavior has been examined by conducting skewness, kurtosis,

LM, and standard deviation tests, using normal distribution as the null hypothesis.  Quite

disparate results are found.  For the nonagricultural commodities, very different results

are found between the two sample sizes.  The gold and T-bonds with the larger sample

size did not produce more normal distribution as intervals were widened from daily to

weekly, indicating that the distributional behavior changes over time since data used here

and by Poitras (1990) did not overlap.  By contrast, many of the smaller sized samples of

gold and T-bonds converged to a normal distribution.  For agricultural commodities, a

discrepancy was found between DFPS and RFPS.  In case of DFPS, there was a trend of

convergence to a normal distribution for corn and there exists a normal distribution for

both daily and weekly live cattle.  On the other hand, nonnormal distributions dominate

for both commodities’ daily and weekly RFPS.  Clearly, however, for all the data

examined, more weekly intervals are normally distributed than daily intervals, as

expected.

For the larger sample size of gold and T-bonds, the combination of negative

skewness and fat tails was the main reason for nonnormality.  Meanwhile, leptokurtosis

alone as well as the combination of skewness and fat tails created nonnormality for the

smaller sample size of gold and T-bonds and for corn and live cattle.  The nonnormality

of distributions leads to the question of the correct distribution.  This is of interest to

spread traders so they can manage risks more efficiently and make informed trading
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decisions.  This study found that the logistic distribution was the best fit distribution for

changes in most daily DFPS.  Leptokurtosis, which was a main reason causing

nonnormality, was confirmed through detection of a logistic distribution, generally known

as more peaked and fat tailed than the normal distribution.

Two spread length effects were also examined, but no consistent results were

found.  The negative correlation expected between spread length and nonnormality was

only partially supported for the larger sample size of gold and T-bonds and for corn and

live cattle, but not for the smaller sample size of gold.  The spread length effect of

volatility was partially supported for nonagricultural commodities, and fully supported for

corn and live cattle, consistent Castelino and Vora (1984).

Overall, normal and logistic distributions dominate the changes in futures spreads

examined here, but results are clearly sensitive to commodity, sample period, sample size,

spread length, differencing interval, and spread definition.  Spread traders can expect to

find normal distributions more often with weakly intervals than daily, and with

nonstorable commodities than storable.  Whether the data are relatively stable or unstable

does not influence the results.  Hence, as traders search for the probability distributions of

futures price spreads, each spread is likely to have its own unique characteristics, making

it difficult for traders to generalize or find common patterns.
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Table I.  Distributional Test for Changes in Gold fps (Large Sample Size)

DFPS Skewness Kurtosis LM Stand.Dev
Dec.-Dec.    Daily (N=210) -0.838*  6.1* 108.12* 0.511

  Weekly (N=42) -1.102*  5.40*  18.12* 1.162

1988 Dec.-June    Daily (N=334) -2.456* 27.72* 8813.6* 0.444

  Weekly (N=68) -0.121  4.40*  6.243* 0.962

Dec.-Feb.    Daily (N=250) -3.178* 31.61* 8910.4* 0.784

  Weekly (N=55) -1.093  5.927*  30.58* 1.723

Dec.-Dec.    Daily (N=209)  0.384  8.19* 238.18* 0.243

  Weekly (N=42)  0.470  3.116  1.53 0.594

1992 Dec.-June    Daily (N=358) -0.664* 11.95* 1218.7* 0.146

  Weekly (N=74)  0.124  4.49*  6.90* 0.340

Dec.-Feb.    Daily (N=292) -1.199* 13.25* 1343.6* 0.140

  Weekly (N=61) -0.096  4.75*  7.61* 0.328

RFPS Skewness Kurtosis LM Stand.Dev
Dec.-Dec.    Daily (N=210) -0.709*  5.851* 88.269* 0.015

  Weekly (N=42) -0.974*  5.055* 13.693* 0.034

1988 Dec.-June    Daily (N=334) -0.791* 12.541* 1297.7* 0.024

  Weekly (N=68)  0.433*  4.234*  6.922* 0.056

Dec.-Feb.    Daily (N=250) -1.571* 16.491* 1990.7* 0.024

  Weekly (N=55) -1.626*  9.342* 116.41* 0.056

Dec.-Dec.    Daily (N=209)  1.17* 13.31* 968.09* 0.022

  Weekly (N=42)  0.636*  4.128*  4.937* 0.051

1992 Dec.-June    Daily (N=358) -0.262*  6.314* 198.32* 0.017

  Weekly (N=74)  0.287  3.25  1.191 0.040

Dec.-Feb.    Daily (N=292) -0.792*  8.067* 341.71* 0.015

  Weekly (N=61) -0.331  4.638*  7.675* 0.034

*Indicates the null hypothesis of normal distribution is rejected at 10 % level of
significance.
The numbers in parentheses are the numbers of the observation.  Stand.Dev is the
standard deviation.
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Table II.  Distributional Test for Changes in T-Bonds fps (Large Sample Size)

DFPS Skewness Kurtosis LM Stand.Dev
Dec.-Dec.    Daily (N=295)  0.157  9.044* 450.24* 0.080

  Weekly (N=60) -0.445*  5.069*  12.69* 0.157

1988 Dec.-June    Daily (N=334) -0.576*  8.080* 377.57* 0.035

  Weekly (N=68) -0.499*  6.668*  40.94* 0.086

Dec.-Mar.    Daily (N=285) -0.770*  9.08* 467.06* 0.055

  Weekly (N=59) -0.470*  6.581*  33.71* 0.140

Dec.-Dec.    Daily (N=210) -0.776*  7.453* 194.54* 0.066

  Weekly (N=43) -0.149  2.459  0.684 0.151

1992 Dec.-June    Daily (N=358) -0.174*  4.690* 44.427* 0.034

  Weekly (N=74) -0.432  4.159*  6.444* 0.069

Dec.-Mar    Daily (N=310) -0.171  5.237* 66.165* 0.045

  Weekly (N=64) -0.284  3.705  2.185 0.094

RFPS Skewness Kurtosis LM Stand.Dev
Dec.-Dec.    Daily (N=295)  0.671* 11.766* 966.63* 0.037

  Weekly (N=60)  1.278*  8.413* 89.566* 0.079

1988 Dec.-June    Daily (N=334)  1.371* 14.977* 2100.8* 0.025

  Weekly (N=68)  1.435* 10.924* 201.25* 0.065

Dec.-Mar.    Daily (N=285)  1.593* 16.321* 2227.6* 0.025

  Weekly (N=59)  1.338* 10.082* 140.89* 0.068

Dec.-Dec.    Daily (N=210)  2.182* 19.954* 2681.6* 0.026

  Weekly (N=43)  0.095  2.755  0.173 0.056

1992 Dec.-June    Daily (N=358)  0.398*  8.955* 538.39* 0.027

  Weekly (N=74)  0.744*  6.308* 40.564* 0.057

Dec.-Mar    Daily (N=310)  0.380*  9.704* 587.91* 0.025

  Weekly (N=64)  0.309  4.444*  6.578* 0.051

*Indicates the null hypothesis of normal distribution is rejected at 10 % level of
significance.
The numbers in parentheses are the numbers of the observation.  Stand.Dev is the
standard deviation.
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Table III.  Distributional Test for Changes in Gold fps (Small Sample Size)

DFPS Skewness Kurtosis LM Stand.Dev
Dec.-Dec.    Daily (N=129) -0.513*  4.150* 12.774* 0.43

  Weekly (N=26)  0.237  2.976  0.244 0.90

1988 Dec.-June    Daily (N=129) -0.225  4.163*  8.351* 0.23

  Weekly (N=26)  0.172  2.921  0.136 0.48

Dec.-Feb.    Daily (N=129)  0.805* 10.058* 281.73* 0.11

  Weekly (N=26) -0.375  1.989  1.717 0.20

Dec.-Dec.    Daily (N=164)  0.314*  9.174* 263.14* 0.24

  Weekly (N=33)  0.412  3.906  2.061 0.53

1992 Dec.-June    Daily (N=164) -0.007  6.366* 77.406* 0.15

  Weekly (N=33) -0.213  3.135  0.274 0.30

Dec.-Feb.    Daily (N=164) -0.017  7.896* 163.79* 0.07

  Weekly (N=33)  0.50  5.069*  7.259* 0.10

RFPS Skewness Kurtosis LM Stand.Dev
Dec.-Dec.    Daily (N=129) -0.382*  4.030*  8.842* 0.01

  Weekly (N=26)  0.325  3.097  0.468 0.03

1988 Dec.-June    Daily (N=129) -0.082  4.237*  8.372* 0.01

  Weekly (N=26)  0.259  3.115  0.304 0.03

Dec.-Feb.    Daily (N=129)  1.314* 13.535* 633.66* 0.11

  Weekly (N=26) -0.401  2.102  1.569 0.20

Dec.-Dec.    Daily (N=164)  1.240* 12.924* 715.14* 0.02

  Weekly (N=33)  0.805*  4.835*  8.195* 0.05

1992 Dec.-June    Daily (N=164)  0.832*  9.809* 335.74* 0.03

  Weekly (N=33)  0.152  3.759  0.919 0.06

Dec.-Feb.    Daily (N=164)  1.072* 12.004* 585.39* 0.05

  Weekly (N=33)  1.162*  7.740*  38.32* 0.07

*Indicates the null hypothesis of normal distribution is rejected at 10 % level of
significance.
The numbers in parentheses are the numbers of the observation.  Stand.Dev is the
standard deviation.
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Table IV.  Distributional Test for Changes in T-Bonds fps (Small Sample Size)

DFPS Skewness Kurtosis LM Stand.Dev
Dec.-Dec.    Daily (N=130)  0.194  2.880  0.898 0.06

  Weekly (N=26) -0.080  2.324  0.523 0.14

1988 Dec.-June    Daily (N=130)  0.121  2.858  0.426 0.04

  Weekly (N=26) -0.367  2.318  1.807 0.07

Dec.-Mar.    Daily (N=130)  0.025  2.520  1.262 0.02

  Weekly (N=26) -0.297  2.514  0.637 0.04

Dec.-Dec.    Daily (N=163)  0.620*  3.980* 16.954* 0.07

  Weekly (N=33)  0.638  4.309  4.594 0.16

1992 Dec.-June    Daily (N=163)  0.352*  3.937*  9.329* 0.03

  Weekly (N=33)  0.426  3.034  1.002 0.08

Dec.-Mar    Daily (N=163)  0.476*  3.993* 12.845* 0.02

  Weekly (N=33)  0.624  3.073  2.146 0.04

RFPS Skewness Kurtosis LM Stand.Dev
Dec.-Dec.    Daily (N=130) -0.375  4.064*  9.169* 0.03

  Weekly (N=26)  0.119  1.905  1.361 0.06

1988 Dec.-June    Daily (N=130) -0.290  4.133*  8.766* 0.03

  Weekly (N=26)  0.185  1.951  1.339 0.06

Dec.-Mar.    Daily (N=130) -0.116  3.653  2.606 0.04

  Weekly (N=26)  0.308  2.580  0.603 0.07

Dec.-Dec.    Daily (N=163) -0.416*  3.772*  8.749* 0.02

  Weekly (N=33) -0.185  3.403  0.412 0.04

1992 Dec.-June    Daily (N=163) -0.045  3.845*  4.902* 0.02

  Weekly (N=33) -0.212  2.670  0.372 0.04

Dec.-Mar    Daily (N=163) -0.238  3.423  2.757 0.02

  Weekly (N=33) -0.405  2.670  1.051 0.04

*Indicates the null hypothesis of normal distribution is rejected at 10 % level of
significance.
The numbers in parentheses are the numbers of the observation.  Stand.Dev is the
standard deviation.
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Table V.  Distributional Test for Changes in Corn fps

DFPS Skewness Kurtosis LM Stand.Dev
Dec. 88    Daily (N=130) -0.339*  6.082* 53.947*   5.19

- Dec. 89   Weekly (N=26) -0.515  3.329  1.266  15.36

1988 Dec. 88    Daily (N=130) -1.142* 10.911* 367.22*   1.99

- July 89   Weekly (N=26) -1.383*  6.244* 19.694*   5.93

Dec. 88    Daily (N=130) -0.741* 11.387* 392.95*   0.85

- Mar. 89   Weekly (N=26) -0.915*  5.560* 10.724*   1.98

Dec. 92    Daily (N=162)  0.723*  6.144* 80.856*   1.81

- Dec. 93   Weekly (N=33)  0.679  4.216  4.570   4.23

1992 Dec. 92    Daily (N=162) -0.058  6.615* 17.689*   0.69

- July 93   Weekly (N=33)  0.492  3.499  1.671   1.76

Dec. 92    Daily (N=162) -0.216  3.452  2.638   0.36

- Mar. 93   Weekly (N=33) -0.096  4.345  2.538   0.64

RFPS Skewness Kurtosis LM Stand.Dev
Dec. 88    Daily (N=130) 10.867* 121.86* 79084.3* 2.13

- Dec. 89   Weekly (N=26)  1.333*  6.019*  17.575* 2.91

1988 Dec. 88    Daily (N=130) -1.655* 13.590* 666.754* 1.01

- July 89   Weekly (N=26) -0.602*  7.189*  20.580* 2.11

Dec. 88    Daily (N=130)  6.779* 72.567* 27187.3* 0.66

- Mar. 89   Weekly (N=26) -4.377* 21.359* 448.151* 1.71

Dec. 92    Daily (N=162) -3.004* 23.772* 3156.06* 1.35

- Dec. 93   Weekly (N=33) -1.126*  9.347*  62.373* 2.47

1992 Dec. 92    Daily (N=162)  0.590*  8.159* 189.031* 0.05

- July 93   Weekly (N=33)  1.367*  6.643*  28.525* 0.12

Dec. 92    Daily (N=162) -0.153  3.575   2.860 0.04

- Mar. 93   Weekly (N=33)  0.302  4.020   1.934 0.08

*Indicates the null hypothesis of normal distribution is rejected at 10 % level of
significance.
The numbers in parentheses are the numbers of the observation.  Stand.Dev is the
standard deviation.
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Table VI.  Distributional Test for Changes in Live Cattle fps

DFPS Skewness Kurtosis LM Stand.Dev
Dec. 88    Daily (N=130)  0.206  3.455  2.038 0.41

- June 89   Weekly (N=26) -0.05  2.384  0.422 0.81

1988 Dec. 88    Daily (N=130) -0.032  2.967  0.028 0.35

- April 89   Weekly (N=26) -0.180  2.239  0.768 0.69

Dec. 88    Daily (N=130) -0.048  2.849  0.173 0.24

- Feb. 89   Weekly (N=26) -0.208  2.564  0.393 0.50

Dec. 92    Daily (N=151) -0.042  2.988  0.045 0.21

- June 93   Weekly (N=31) -0.267  2.717  0.471 0.37

1992 Dec. 92    Daily (N=164)  0.104  3.133  0.417 0.19

- April 93   Weekly (N=33) -0.332  2.268  1.342 0.31

Dec. 92    Daily (N=164)  0.112  3.410  1.492 0.15

- Feb. 93   Weekly (N=33)  0.020  3.317  0.141 0.26

RFPS Skewness Kurtosis LM Stand.Dev
Dec. 88    Daily (N=130) -0.866* 20.436* 1663.06* 1.59

- June 89   Weekly (N=26) -2.295*  8.218*  52.327* 1.89

1988 Dec. 88    Daily (N=130)  0.563*  3.539   8.43* 0.41

- April 89   Weekly (N=26)  0.538  2.846   1.280 0.45

Dec. 88    Daily (N=130) -0.278 19.243* 1430.80* 1.46

- Feb. 89   Weekly (N=26) -1.912*  6.906*  32.375* 2.28

Dec. 92    Daily (N=151)  0.977*  6.327*  93.657* 0.09

- June 93   Weekly (N=31)  1.186*  6.101*  19.684* 0.18

1992 Dec. 92    Daily (N=164)  7.439* 86.229* 48847.4* 1.05

- April 93   Weekly (N=33)  4.175* 21.150* 548.857* 2.66

Dec. 92    Daily (N=164)  1.281* 10.158* 394.934* 0.40

- Feb. 93   Weekly (N=33)  1.285*  4.986*  14.507* 0.44

*Indicates the null hypothesis of normal distribution is rejected at 10 % level of
significance.
The numbers in parentheses are the numbers of the observation.  Stand.Dev is the
standard deviation.
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Table VII. Best Fit Distributions (Daily Spreads)

Distribution χ 2 Distribution χ 2 Distribution χ 2

Dec. - Dec. Dec. - July Dec. - March
Corn 1988 Logistic 18.643 Student’s t 23.624 Logistic 48.930

1992 Logistic 19.763 Logistic 10.491 Normal 53.365

Dec. - July Dec. – April Dec. - Feb.
Live 1988  Logistic**  9.390 Normal 2.473 Normal 12.369

Cattle 1992 Normal 12.626 Normal 20.431  Logistic** 6.281

Dec. - Dec. Dec. – June Dec. - Feb.
Gold 1988 Logistic 51.803 Student’s t 326.871 Triangular 555.910*

(Large Size) 1992 Logistic 78.339 Logistic 209.314 Logistic 368.783*

Dec. - Dec. Dec. – June Dec. - Feb.
Gold 1988 Logistic 35.787 Logistic 39.786 LogLogistic 22.932

(Small Size) 1992 Logistic 80.864 Logistic 58.558 Logistic 48.764

Dec. - Dec. Dec. - June Dec. - March
T-Bonds 1988 Logistic 51.452 Logistic 119.207 Logistic 66.402

(Large Size) 1992 Logistic 119.491 Logistic 62.962 Logistic 47.260

Dec. - Dec. Dec. - June Dec. - March
T-Bonds 1988 Triangular** 4.247 Normal 28.146 Normal 260.189*

(Small Size) 1992 Logistic 28.449 Logistic 101.333 Logistic 322.601*

* Indicates the null hypothesis of the best fit distribution is rejected at 10 % level of
significance.
** Indicates that normal distribution is the second best fit with the coefficient of 13.219
for 1988 live cattle, 7.487 for 1992 live cattle, and 9.005 for 1988 T-bonds respectively,
which can not be rejected at 10 % level of significance.
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