Research on the Estimation Model of Soil Moisture Content Based on the Characteristics of Thermal Infrared Data

With the portable Fourier Transform Infrared Spectroscopy (FTIR), the reflectance spectra of soil samples with different moisture content are measured in laboratory for expounding the characteristic of radiation in the thermal infrared part of the spectrum with different soil moisture content. A model of estimating the moisture content in soil is attempted to make based on Moisture Diagnostic Index (MDI). In general,the spectral characteristic of soil emissivity in laboratory includes the following aspects.Firstly,in the region of 8.0-9.5 μm,along with the increase of soil moisture content,the emissivity of soil increases to varying degrees. The spectral curves are parallel relatively and have a tendency to become horizontal and the absorbed characteristic of reststrahlen is also weakened relatively with the increase of soil moisture in this region.Secondly,in the region of 11.0-14.0 μm,the emissivity of soil has a tendency of increasing.There is an absorption value near about 12.7 μm. As the soil moisture content increases,the depth of absorption also increases. This phenomenon may be caused by soil moisture absorption. Methods as derivative, difference and standardized ratio transformation may weaken the background noise effectively to the spectrum data. Especially using the ratio of the emissivity to the average of 8-14 μm may obviously enhance the correlation between soil moisture and soil emissivity. According to the result of correlation analysis, the 8.237 μm is regarded as the best detecting band for soil moisture content. Moreover,based on the Moisture Diagnostic Index ( MDI) in the 8.194-8.279 μm, the logarithmic model of estimating soil moisture is made.

Issue Date:
Publication Type:
Journal Article
PURL Identifier:
Published in:
Asian Agricultural Research, Volume 05, Issue 02
Page range:
Total Pages:

 Record created 2017-04-01, last modified 2017-06-08

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)