

The World's Largest Open Access Agricultural & Applied Economics Digital Library

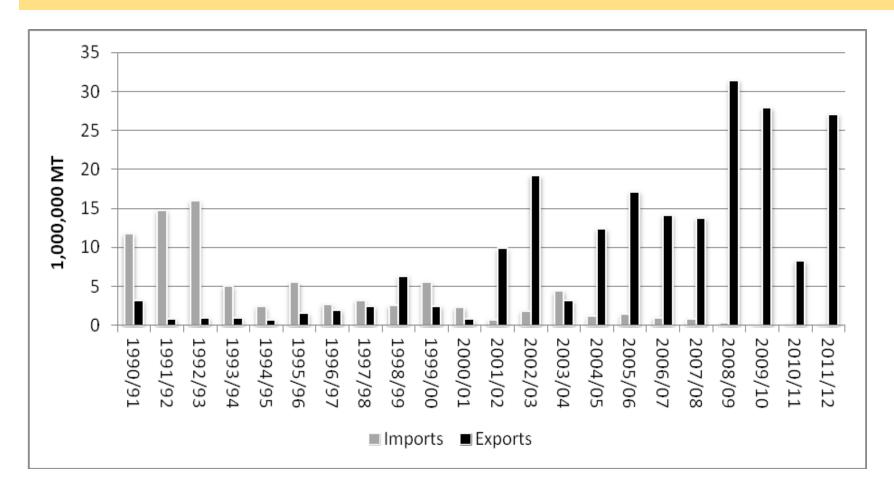
## This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<a href="http://ageconsearch.umn.edu">http://ageconsearch.umn.edu</a>
<a href="mailto:aesearch@umn.edu">aesearch@umn.edu</a>

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


## Black Sea and World Wheat Market Price Integration Analysis



Kateryna Goychuk and William H. Meyers University of Missouri-Columbia



## Dynamics of the Russian and Ukrainian wheat exports and imports





#### Russian and Ukrainian Wheat Exports (1000 MT)

|   | Country       | 2008/09 | 2009/10 | 2010/11 | 2011/12 |
|---|---------------|---------|---------|---------|---------|
| 1 | United States | 27,101  | 24,172  | 35,977  | 28,071  |
| 2 | Australia     | 13,450  | 13,764  | 18,477  | 23,041  |
| 3 | Russia        | 18,393  | 18,556  | 3,983   | 21,627  |
| 4 | Canada        | 18,674  | 18,992  | 16,768  | 17,603  |
| 5 | EU-27         | 25,351  | 22,115  | 22,906  | 16,439  |
| 6 | Argentina     | 8,651   | 5,255   | 7,742   | 11,949  |
| 7 | Kazakhstan    | 5,701   | 7,871   | 5,519   | 10,619  |
| 8 | Ukraine       | 13,037  | 9,337   | 4,302   | 5,436   |
| 9 | Turkey        | 2,342   | 4,363   | 2,945   | 3,680   |

> 50% of total wheat is exported to North Africa and Near East Asia



## Objective of the study

 to investigate short- and long-run wheat price dynamics between Ukraine and Russia and other major wheat exporters - United States, European Union (EU), and Canada.



## More specifically the goals are...

 To check whether Black sea wheat markets are integrated with the world grain markets

 To analyze if the price transmission is symmetric (for the pairs of series that are cointegrated)

 To investigate the short run dynamics between cointegrated series

#### Methods used

Testing for Unit Roots (ADF, PP, and KPSS)



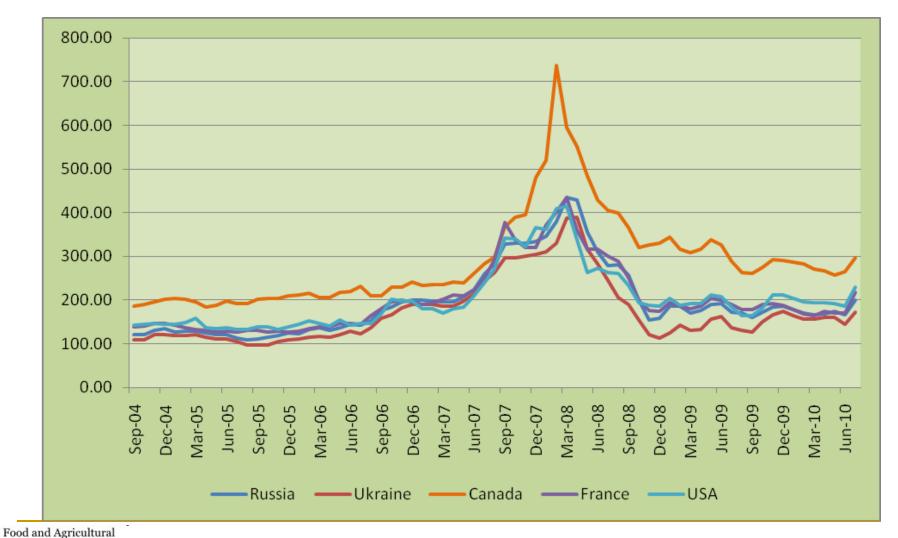
- Testing for Cointegration (long-run relationship)
  - Residual based test [primary one]
  - Johansen's Maximum Likelihood test



TAR, M-TAR (asymmetric price adjustment)



Error-Correction Model (short-run dynamics)


#### Data

- Monthly wheat FOB prices for:
  - Russian Soft Wheat (Black Sea ports)
  - Ukrainian Feed Wheat (Black Sea ports)
  - Canadian Western Red Spring Wheat (St. Lawrence)
  - US Soft Red Winter Wheat (Gulf ports)
  - French Soft Wheat (Rouen)

- Time span: from July 2004 till October 2010
- Prices were obtained from the International Grain Council



#### Comparison of the analyzed wheat price series, \$ per ton





Source: IGC, 2011

## Step 1: Testing data stationary

- Augmented Dickey-Fuller (ADF)
- Philips-Perron (PP) tests
- Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test
- The results suggested that all series are I(1) stationary



## Step 2: Cointegration tests

 Cointegration presupposes that observable variables exhibiting non-stationary behavior will nonetheless be linked in the long-run

#### Two methods:

- Johansen Maximum Likelihood Method (both multiple and pairwise comparisons)
- Engel and Granger residual based test (only pairwise comparisons)



# Cointegration test results – Johansen ML on multiple series (trace test)

| Ho(Rank=r) | H1(Rank>r) | Trace    | 5% CV |
|------------|------------|----------|-------|
|            |            |          |       |
| 0          | 0          | 112.08** | 75.74 |
| 1          | 1          | 63.47**  | 53.42 |
| 2          | 2          | 27.87    | 34.8  |
| 3          | 3          | 12.26    | 19.99 |
| 4          | 4          | 5.89     | 9.13  |



#### Cointegration tests' results – pairwise for Russia

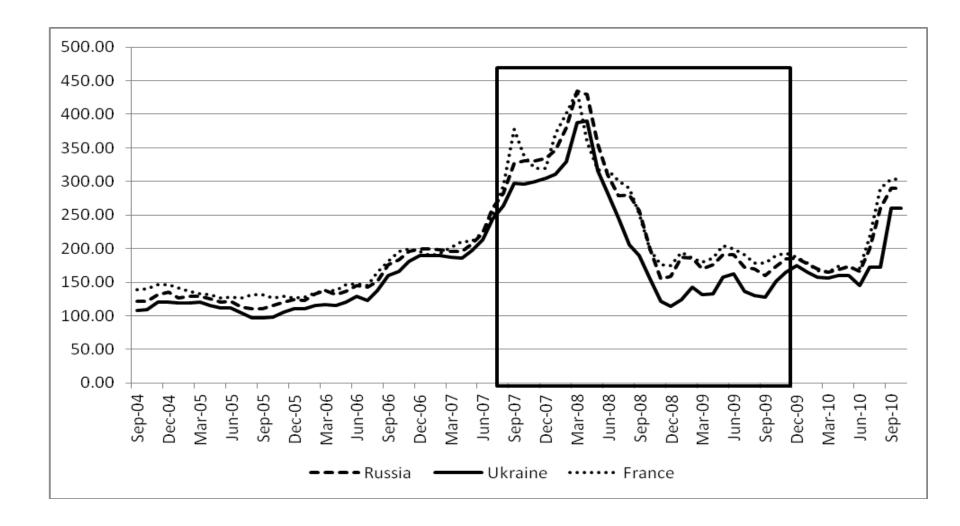
|                 | Engel and Granger procedure |         |         |                 |         |       |
|-----------------|-----------------------------|---------|---------|-----------------|---------|-------|
| Pairs of series | # of lags                   | ADF PP  |         | Johansen method |         |       |
|                 |                             |         |         | Ho(H1)          | Trace   | 5%CV  |
| ъ . г           | 2                           | -5.32** | -5.24** | R=0((r>0)       | 25.98** | 19.99 |
| Russia-France   |                             |         |         | R=1(r>1)        | 6.69    | 9.13  |
| Duggio Conodo   | 1                           | 2.20    | 20      | R=0((r>0)       | 13.23   | 19.99 |
| Russia-Canada   | 1                           | -2.30   | -2.38   | R=1(r>1)        | 5.12    | 9.13  |
| Duggio IICA     | 1                           | -3.79** | -3.81** | r=0((r>0)       | 15.47   | 19.99 |
| Russia-USA      | 1                           |         |         | R=1(r>1)        | 3.75    | 9.13  |

Asterisks denote levels of significance (\* for 10 percent, \*\* for 5 percent). The 5% and 10% critical values for tests with a drift are -3.42 and -3.10 respectively. Critical values were obtained from MacKinnon (1991).

12

#### Cointegration tests' results – pairwise for **Ukraine**

|                   | Engel and Granger procedure |       |           |                 |         |       |
|-------------------|-----------------------------|-------|-----------|-----------------|---------|-------|
| Pairs of series   | # of ADF lags               |       | PP        | Johansen method |         |       |
|                   |                             |       |           | Ho(H1)          | Trace   | 5%CV  |
| III               | 3                           | -2.33 | -3.64*    | R=0((r>0)       | 24.66** | 19.99 |
| Ukraine-France    |                             |       |           | R=1(r>1)        | 5.28    | 9.13  |
| Illraina Canada   |                             |       | R=0((r>0) | 12.48           | 19.99   |       |
| Ukraine - Canada  | 1                           | -1.90 | -1.99     | R=1(r>1)        | 4.70    | 9.13  |
| I Ilmain a I IC A | 2 -                         | 2.01  | -3.24*    | r=0((r>0)       | 12.48   | 19.99 |
| Ukraine-USA       |                             | -2.91 |           | R=1(r>1)        | 4.56    | 9.13  |


Asterisks denote levels of significance (\* for 10 percent, \*\* for 5 percent). The 5% and 10% critical values for tests with a drift are -3.42 and -3.10 respectively. Critical values were obtained from MacKinnop (1991).

### Therefore,

- Based on the results we confirm cointegration of Russian-French, Russian-US and Ukrainian-French pairs of prices
- The long-run elasticities are equal to
  - 1.04 (case of Russia-France)
  - 1.16 (case of Russia-USA)
  - 1.05 (case of Ukraine-France)



### Possibility of a structural break?



Source: IGC, 2011

## Chronology of government decisions on grain export restrictions and export quotas, starting from 2006 (1000 MT)

| Period                | Wheat                  | Barley               | Corn             |
|-----------------------|------------------------|----------------------|------------------|
| 10/17/2006-12/31/2006 | 400                    | 600                  | 600              |
| 12/14/2006-06/30/2007 | 3                      | 600                  | 500              |
| 02/15/2007-06/30/2007 | 228                    | 606                  | 30               |
| 02/26/2007-06/07/2007 |                        | Quotas cancelled     | Quotas cancelled |
| 06/08/2007-06/30/2007 | Quotas cancelled       |                      |                  |
| 07/01/2007-10/31/2007 | 3                      | 3                    | 3                |
| 01/01/2008-03/31/2008 | 200                    | 400                  | 600              |
| 01/01/2008-07/01/2008 | 1,200                  | 900                  |                  |
| 05/21/2008            | Quotas are cancelled   |                      |                  |
| 08/2010               | 500                    | 500                  | 2,000            |
| 10/2010-12/2010       | 500                    | 200                  | 2,000            |
| 12/2010               | 1,000                  | 200                  | 3,000            |
| 03/2011               | 1,000                  | 200                  | 5,000            |
| 05/2011               |                        | Quotas are cancelled |                  |
| 05/2011-01/2012       | Tariffs are introduced |                      |                  |
| 10/2011               |                        | 1/01/2012)           |                  |

Source: UkrAgroConsult, FAO, 2009

## TAR model snapshot

$$\Delta \bar{\varepsilon}_{t} = \gamma_{1} \, \bar{\varepsilon}_{t-1} + \sum_{i=1}^{p} \gamma_{i+1} \Delta \, \bar{\varepsilon}_{t-i} + \omega_{t}$$

$$\Delta \bar{\varepsilon}_t = I_t \gamma_1 \bar{\varepsilon}_{t-1} + (1 - I_t) \gamma_2 \bar{\varepsilon}_{t-1} + \varphi_t , \text{ where}$$

$$I_{t} = \begin{cases} 1 & \text{if } \bar{\varepsilon}_{t-1} \geq \tau \\ 0 & \text{if } \bar{\varepsilon}_{t-1} < \tau \end{cases}$$

# Step 3: Testing for asymmetric price transmission – TAR model\*

|                                      | Russia - France    | Russia-USA         | Ukraine –France    |
|--------------------------------------|--------------------|--------------------|--------------------|
| Variable                             | Parameter estimate | Parameter estimate | Parameter estimate |
| $\gamma_1$                           | -0.80 (-5.31)**    | -0.26 (-2.05)*     | -0.22 (-1.18)      |
| $\gamma_2$                           | -0.74 (-4.76)**    | -0.36 (-2.30)*     | -0.38 (-2.75)**    |
| $H_0: \gamma_1 = \gamma_2 = O(\Phi)$ | 22.08**            | 4.38**             | 6.82**             |
| $H_0: \gamma_1 = \gamma_2(F)$        | 0.11[0.74]         | 0.24 [0.62]        | 0.33 [0.57]        |
| τ                                    | -0.019             | -0.04              | 0.016              |

<sup>\*</sup>M-TAR model provided similar results

## Step 3: Testing for asymmetric price transmission – cont.

 The results show that for all three cointegrated pairs of wheat prices the price transmission is symmetric

This implies that the adjustment towards the equilibrium is of the same magnitude regardless of the direction of the change.

### Step 4: Error-Correction Model

 Error Correction Models (ECMs) estimate the speed at which a dependent variable returns to equilibrium after a change in an independent variable

 Before the ECM can be formed, there first has to be evidence of cointegration



### ECM results

|                  | Speed of adjustment, α <sub>1</sub> | Test F-value | Time of adjustment |
|------------------|-------------------------------------|--------------|--------------------|
| Russia-France    | -0.48**                             | 12.32**      | 3.5 months         |
| Russia - USA     | -0.20**                             | 10.69**      | 10 months          |
| Ukraine - France | -0.20**                             | 11.38**      | 10 months          |



## Policy Implications

- Trade liberalization issues
  - Long-run transmission results indicate that Ukraine and Russia are integrated with the world market
  - Transmission is symmetric
- Estimation of elasticities
  - Modeling global wheat market behavior
- Future research



#### **THANK YOU!**