Files

Abstract

Dryland salinity management requires the integration of hydrologic, economic, social and policy aspects into an interactive method that decision makers can use to evaluate the economic and environmental consequences of alternative land use/management practices as well as various policy choices. This requires that modelling frameworks be open and accessible to a range of disciplines as well as allowing flexibility in exploration in learning or adapting. This interactive method will present the development of a new integrated hydrologic-economic model in the context of a catchment in which land use change is the dominant factor and salinity emergence due to land use and land cover change presents a major land and water degradation problem. This model will reflect the interactions between biophysical processes and socioeconomic processes as well as to explore both economic and environmental consequences of different policy options. All model components will be incorporated into a single consistent model, which will be solved in its entirety by an agent based modelling (ABM) approach. Agent-based Modelling (ABM) will allow to incorporate features that are necessary for a realistic representation of economic behaviour and interactions among resource managers.

Details

PDF

Statistics

from
to
Export
Download Full History