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Dynamic Interactions between Pastire Produciion, Milk
Yields and Economic Viability of NSW Duiry Farms

Peter R, Tozer and Ray G. Huffaker *

Abstract |

Previous bioeconomic studies have mainly concentrated on beef operations, principally
stocker uctivities, and rangeland conditions. These studies have assumed that the
rancher determines some desired weight gain per head over a period, usually one year,
and this weight guin is achieved by utilising a resource such as pasture or grazing
rangeldnd This swdy ditfers to the previous research as we are interested in the
interactions between pasiure productivity and milk yleld in an intensive grazing
situation, rather than extaasive grazing, and mcmporate more than one type of pasture
or forage type into a model of a daxry systermn,

We develop a du,crcte optxmal contml model based on the energy demand of a herd of
dairy cows and the supply of energy available from the various forages produced on a
model dairy farm. The objective of the model is to maximise the net present value of
the flow of profits generated by the dairy. Incorporated into the model is a herd
dynamics sub-model, a lransferable quota trading equation, and a mxfk revenue

function, ' |

Paper contributed to the 41st Annual Conference of the Australian Agricultural and
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Introduction

The dairy industry in Aus lrdlld is in gcneml pdsture bd‘?ed with concentrates or grains
being fed to supplement the dietary requirements of the cows and to improve milk
productivity on most dairy farms (ABARE 1995, ADC). There are two distinct
production paiterns in the Australian dairy industry, in the states of New South Wales,
Queensland, South Australia and Western Australia milk produc.ion is based on a
supply to the market milk sector, in the remaining states, Tasmania and Victoria, milk is
supplied principally to the manulacturing sector, The milk supply in the market milk
states is relatively constant over the year with some seasonal fluctuations, however, in
Victoria and Tasmania there is a pronounced seasonal pattern of milk production with
production peaking in the spring and relatively little milk produced in the autumn and
winter months (ADC). Victorian and Tasmanian pasture production is winter dominant
due to the prevailing weather patterns, and milk production is not as strictly controlled
as in the other states. Institutional arrangements in the other states force producers to
supply a constant level of market milk throughout the year, hence there is less
seasonality in production, '

Given the pasture based dairy farming systems in this country, and the Jocations of
some of the dairy regions, i.c. the Murray River Valley or the dryland areas of coastal
NSW and Queensland, and the costs associated with pasture renovation, the Dairy
Research and Development Corporation has recognised the need to develop land
nractices that could reduce these costs (Bartsch and Mason). Economic incentives are
also driving dairy farmers to reduce costs of production, particularly competition from
New Zealand in the world market, and paSture based systems are still the most cost
effective method of producing milk. The Dairy Research and Development Corporation
has found that pasture costs are stable at around 13.5 per cent of milk income over the
last 11 years, whereas the costs of grains and/or concentrates have increased from near
zero to about 7 per cent in the same period, Hence the need to sustain a pasture based
production system is seen as a desirable objective for the Australian dairy industry,
rather than turn towards the more costly feedlot 1ypc systems of North America and
Europe, particularly with the prices of feed grains expected to rise over the short to
medium term due to shortages world-wide (Bartsch and Mason),

The aim in this study is to incorporate the dynamic interactions of a dairy farim's
systems, such as changes in pasture composition or prices of output, into a
representation of the farm system that would yield cutput that can be readily
understood, and is applicable to the current situation of the farm, by farm managers or
extension staff, This simple representation will capture the complex dynamic natisre of



the dawry system yet still provide measures of viability of the farm business that can be

used as a basis for long-term management decision-making. A discrete optimal control

model 1s Ml to capture the dynamic interactions of the systems of equations within the
dairy system. This model is based on the work of Standiford and Howitt (1 992), and

Howitt (1996) who show that a discrete optimal control model can be solved as a non-

Imear dynanie optimisaon problent using readily avai ifable mathematical programming

packages such as GAMS, providing the equations within the model satisfy certain

criteria. The resirictions are that the functions be contingous, differentiable, and satisfy

the first and second order conditions to ensure the existence of a solution, Howitt
(1996). We are currently imimersed 1 {he solution phase of (he research and we are
solving the model via a pr{xgx‘mnming approach found m Standiford and Howitt (1992)
and Howitt (1996). ‘

Previous Rescarch

Much of the previous bioeconomie research concerning grazing enterprises hias usnally
concentrated on extensive bee! operations, Karp and Pope (1984), and Pope and
MeBryde (1984), examined the profitability of 8 caw-call operation in the rangetands of
southern Texas employing stochastic dynamic or yuadratic programming, respectively,
to model rancher behaviour. Torrell, Lyon and Godirey (1991) extended this analysis
to incorporate an equation of motion of forage production, the previous researchers
assumed an average level of forage availability over the grazing period. Torrell et al.

(1991) argue that the average torage production funiction docs not capture the variation
in forage production throughout the grazing scason, thus the resultant stocking rate may
not be realistic as there would be insufficient fodder to fzed the stock at some times in
the grazing period.

Huffaker and Wilen (1989) use an optimal control framiework to present a madel of
pasture-grazing interaction in terms of # forage density function and an animal search
and harvest of fozage function. They then introduce a weight gain function for the
grazing animals 5o that an economic interpretation can be applied to the research, in this
article it was assumed the animals were only gaining weight niot reproducing. Given
the three functions mentioned it was possible for them to derive dynamic profit
function that was then used fo derive 4 stocking isocline that was analysed for stability
with respeet to stocking rate and forage production, This method of analysis is a
departure from that of the previous work in that both the stocking rate and forage
production functions are continuous, and the effects of changes in cconomic and
physical parameters can be readily asceriained by examination of the phase diagrams,



Work in dairy systems analysis can be divided into two distinct categories, simulation
analysis and mathematical programming. Economic, bioeconomic or biological
simulation models of duiry farms or parts of dairy systems have been undertaken in
previous research, i.e, Congleton (1984), Gao, Spreen and DeLorenzo (1992), and
Parker, Muller and Buckmaster (1992), In most cases it was assumed that dairy
farmers had access to an infinite supply of feed for their dairy and this feed was
purchased, i realily this is not the case, In Australia, dairy farms offer pa: tures with
fimte forage yields and dairy farmers do not have access to cither unlinited feed
sources or face capital constraints limiting the amount of feed that can be purci.ased.

Other researchers have modelled dairy sysmms using linear programming, see Olney
and Kirk (1989), Olney and Falconer (1985}, Gunn and Silvey (1967), Conway and
Killen (1987), or Tozer (1993), This technique lincarises non-linear equations or
systems of equations within a model, such as pasture growth or milk yield functions,
Imposing these types of restrietions yield solutions that may seem ideal given the
lincarity of the zquations, but which may not be economically or bmlogwally
consistent.

The Farmer's Problem and Optimal Control

The dairy farmer’s problem is to maximise the economic benefit from all the resources,
pastures, land and cows, of the farm subject to the physical and financial constraints of
the farmer, Hence, the decision for the farmer is to choose the stocking rate, S, that
will maximise the present value of current and future profits of the dairy farm, that is;

() Mgx NPV = z (~€1~1-7,~ REARS oMo

where ni" is the profit function of the dairy enterprise, and n{‘ is the profit to the farmer
of trading in livestock, female and male calves, and cull cows, Cf is the cost of feeding
supplements o the producing herd due to a shortage of energy from pasture production
and Cf are the costs of producing pastures for the primary energy supply to the milk
producing herd,

In the management of a dairy system the dairyman can usually control few variables,
and in general may control only the stocking rate, the level of supplements fed, and the
pasture rotations of the farm, If we assume that pasture rotations are fixed, meaning -
that the area of the firm under particular pasture types remains constant, which is not
unusual, then the dairy farmer really has control only over the stocking rate and



supplements fed, As the farmer can control the stocking rate, then this control will
effect the state of variables the farmer has no control aver, such as pasture growth s
the herd size. Thus in the context of this problem the control variable is the stocking
rate, and the slate variables are the herd size and pasture availability, The dairymar also
controls the Jevel of supplements fed by determining the stocking rate of pasture and th
level of milk production, thus these three variables are dependent control variables,

In the following discussion we will develop a model to explain the behaviour of the
dairyman, and show how each sub-system of the dairy system can be incorporated into
an optimal control framework which can be solved to maximise equation 1.

Herd Dynamies.

The herd ciynamies‘within a dairy herd are fairly complex and have been studied in '
great deal in previous work such as van Arendonk (1985, 1986, and 1988), and
Stewart, Burnside. Wilton and Pfeiffer (1976). In this study we will abstract from the
complex dynamies and provide a simplified model of herd dynamics. We will assume

all deaths, transfers from age class to age class, and culling from the different age

classes oceurs on the first day of month t. Another assumption is that the average
monthly total calving rate (oipe)! of the herd iy censtant across age categories. The
culling rate 8. and death rate 8} will be constants but will vary across the age classes.
Also, it will be assumed that a constant proportion of cows calve in each period. This
IS NOt an uncommon assumption and has been applied in previous research, (sec for
evample Standiford and Howitt 1992, Karp *md Pope 1984, Pope and MeBryde 1984).

The structure of the whole herd is determined by the calving rate, death and culling
rates within age groups and the nun Yer of breeding females, and can bc denoted by the
following equations,

The number of retained heifer calves less than one year old in period t is:

@ W = (1 - o)1 - 8050 i

where k represents the lag caused by animals being born aver a twelve monthly period
and remaining in the same age class as those at time t, The number of replaczment
heifers less than two years old, but older than one in period tis:

! oepe 1s employed r-uhcr than o1y, the average monthly Jive alving rate, a8 some calves cauk! die
bewween birih and salg, thus even Lhcxugh the call has died the cow will continue to lastate as nOrmal



21 o
GH'= 20 -5l
k=12

Number of breeding cows in age cluss j in period ¢ is:
21 ,
1o Wy, 8t osl
(4) “1 = Z!‘”!“" “ b‘\ ﬁd)

Summing the number of eattle in each of the age classes in the breeding herd yields the
total herd size in month t;

(5 Hy= Zn{ ‘ 7 2hmy 18 the number of age classes in the breeding herd.

1=

The total herd of the farm, including retained heifers under one year old and
replacentent heifers alder than one, but less than two years old, is given as;

2

. : bl

(6YH] = (1 - o1 - 52)(6'.5a,;,k}:‘_¥r~i;;.k1 +(1 - 8Y) Z‘H{fk
; e k=12

21
+ (-8 -8) ¥ E ((H{*,Zl‘
: Y A

This equation shows us that the structure of the herd depends only on the state variable
H, and not on the stocking rate control variable, Se ‘ '

Energy Supply

There are numerous possible pasture types a dairy farmer can produce for consumption
by the dairy herd, and the energy supplied by these pastures at any one time will be
dependent on the growih of that pasture over time, We will assume there are four types
of pastures grown on the farm pastures w, x, y and z, and thie pasture production in
period t from these different pastutes can be written as;

7 F‘(w,x'y,z) S F‘E\r.x.ygz) + Qév;.x;y,z)(p;(g,xpy.z’)) -Cn (ﬁg?,x.y‘z}). Sti



where F“””‘“‘"’ is the amount of pasiure available at the beginning of period t measured
in kg DM/ha, F(“ w¥) s the pasture dry matter at the beginning of the previous
period, GEH+ ); x0T i the growth function of the pasture in the previous
period, and Ci fl““"‘ %)y i the consumption of pastures in the previous which is

multtphied by the stocking rate in the previous, Sii. Sy is the stocking rate of the
pastures of the dairy farm at time -1 or the number of cows per hectare of pasture, and
differs from the total stocking rate, Hy, by the amount of cows being fed supplements.
Using the logastic growt th function and the Michachs-Menten consumption function as
discussed in Huffaker and Wilen (1989 pS55) we can define for pasture x the growth
and consumption functions, which ire respectively;

) GMER) = a B - byt

and

F
(N Cn (Fm)w I ‘.
F’l + K

where ny and by are coefficients of the growth function, The parameters of the
consumption function are g, which is the average satiation rate per animal over all age
clusses in the breeding herd, and K is the Michaelis-Menten constant in kg DM/ha, The
Michaelis-Menten constant is a parameter of the model that determines the steepness of
the pasture consumption function. Adapted from the original definition of the
Michaelis-Menten function, K is defined as the value of forage production for half
maximal intake, i.e. (K = 1/2¢nux), Thornley (1976, ppli-14). This constant is
inversely refated to the search efficiency of the grazing animal, a search efficiency
decline would oceur in a pasture of high forage production us the animal dves not have
to search very hard to find sufficient palatable feed to satisfy it's needs, therefore as
pusture production increases K would decline, Huffaker and Wilen (1989).

From equations 8 and 9 we can derive the pusiure available at the beginning of period t,

(10) F} F{i, + g Yy - bR 7~‘ 33?'&'“ Sit

From previous research we know that the energy content of a well-managed pasture
sward is relatively constant, Newberry and Bowen (1969), and Lazenby (1988), so we



can derive the energy production of this pastare sward by thc following methnd If we
assume the pasture x has 4 constant energy level, ¥s measured in megajoulesfkg DM,
then we have the iotal encry production of the pasture is B MJ/ha, hence;

(NE =y

this imphes that:

By substituting equation 12 mto equation 10 we get;

Y o
! 1 l ’*}" o
. | " ¢ Ly n w
(3 . E:«. - x I":‘:‘l + d{; [,;:‘! Sk : {[":‘s}” N , : -
P e LR e
Y

and multiplymg thmugh m yvm us the following equation for the energy availuble
'a

from pasture x 1 period t

rﬁE"
(‘4)8‘ E*l !‘x ‘*4‘ hx'(r:d‘ ’) } ’ tl B Sl
7 E’t i ~+ K

Energy for milk production or weight gain can come from sources other than the
pasture resource. Producers may choose to feed animals prepared concentrates or
gramns of various types. In the context of the problem being studied the dairy farmer
has a choice of energy sources and can choose to place cows on pasture or feed
supplements, and the number of enws on supplements will depend on the herd size, the
stocking rate of pasture and the relative profitability of this option, Hence we have;

(15) B = (H; - S)X",

where Ef is the energy gained from feeding supplements in period t, (Hy - S;) is the
stocking rate receiving supplemental feeding, and X®is the energy available from the
supplements fed in period t to the stock. The energy supplied from supplements is
restricted by a constraint on feeding dairy cows too much grain or concentrates as this



could lead to the problem of acidosis, or gx%:\in: poisoning. The recommended nmximum
grain intake is approximately 60 per cent of a cow's total encrgy intake, MeDonald et

al..

From the above disenssion it can be seen that the total energy available in any one
period, E, is the sum of the energy from pastures and the energy from supplements.

Hence,

7}

(16) B = BV 4

which can be written in general functional form as;
» S ;(WJ"X‘J) ;t“ﬂm.&‘.é‘) “ oL 1 3

This equation of motion of energy tells us that the fotal energy supply is a function of -
the state variables L}",‘“’) and H,, and the control variables S, and S,

Energy Demand

The demand for energy by an individual cow is contingent upon the physiological
condition and the physicai size of the cow. The energy ‘réqnh‘cmems of 4 cow ¢an be
shown on a time line depicting the time from when the cow calves (t=0) until she calves
again (t=12) (This is an ideal situation, the actual time between calving for individual
cows will vary across a herd);

Figure 1: Calving Time Line

0 (Calves) 3 6 9 12 (Calves)




Figure 2: Milk Production Time Line

| . Lactating i) ,I)ry;;._ﬂl
0 10 12

Figure 3: Pregnancy Status Time Line

INon:pregoant | ' Pres;n-.nmf ]
0 3 (Conception) 12

From =0 until t=2 the cow’s energy requirernents are scpmmd into three ph ysiological
actions. First, energy is required to maintain bodyweight (PE™), the next requirement
s for energy to produce milk (PE, and the last demand for energy is for the weight
foss (PEY that veeurs in the first 3 periods of lactation, (Goodall and MeMurray). The
demand for energy in the period t=3 until the cow is dried off at =9 is made up of the
energy for maintenance, weight change and lactation as in the period t=0-2, plus the
extra energy required for foctal growth (PED, In the periods t=10 and 11 the demands
for encrgy are in the form of foctal growth, maintenance and weight change
requirements. The demand for energy of a cow in these various phy=iological stages is
as follows: ' ’

(I8)PEN,  =PE™ + PE[, + P}, i=0,
(19) m{’}; = PEY + PEL, + PBY + P, i=3, ,..,9
(20) PEy  =PB}+ PEE, + PE[ t=10,11

where PE(; is the per capita energy demand of a non-pregnant lactating animal, PEP is
the per capita demand of 4 prcgnant lactmm cow, and PEM is the per capita demand of

a pregnart dry, or non-lactating, cuw, (i mdmatcs the r‘Umber of months after the cow
last calved),

There are various relationships between the weight of the cow, the period of time from

conception, the amount of weight change, the quality of milk, and the stage of lictation
and energy demands, These relationships are specified below; '

10




PE], = 0.58W0.73
vr" = 1,08¢0.318L
PL*‘ = cnergy of weight change = +34MJ/kg guin

= -28MJ/kg loss
PEL = 1694 BV ¥ I, =Tl

where W= average cow's weight in kg, BV) = energy value of milk (M¥/litre) =
(0.0386BF + 0,02058NF - 0.236), BF = butterfat content of milk in g/kg, SNF =
solid s non-fat content of milk also in g/kg, L, is the yield per head t-i months after

calving (i=0,1...9), and 1= 1.694 EV,.

The number of cattle in each physiological category is a function of the breeding herd
size at {, which in turn is 2 function of the number of cows that calved t-i periods
previously. In the following equations we are assuming that cows are not pregnant,
but lactating for thtee months after calving, pregnant and producing milk for the next
six months, and are pregnant and dry for the remaining three months of the "cow" year,
We use tepe here again as the number of cows that lactate in any one period depends on
the total number of calves born, dead and alive, rather than just the live cﬁ[ving
percentage, as discussed in footnote one. "The number of cows in cach calegory can be
shown to be as follows:

@O HY = gye zﬁ . The number of non-pregnant lactating cows,

22) B = oy 2}{ i Thenumber of pregnant lactating cows,

153

(23)H ”—-mm Z[I” The number of pregnant dry cows,
=10 e :

Therefore we can determine the total energy requirements of the herd from the numbers
in each physiological class and the energy requiremets of the animals in these clagses.

Total energy demanded by each energy category is given by the fol lowmg equations. ,
Beginning with the Jactating non-pregnant category;

11



@nEY = o E(Pr“‘ £ PE + PEE) W,
i=l)

as PE and PEY, are constanis we have,
2 ,
= PE+ PEN I 4 e 3 PEL 11
=0
and by substitution from the definition of PL , we have the following relationship for
the demand for energy by the non-pregnant lactating portion of the herd.

Q™ = PE" B I e D1 Ly,
1=] ‘

Similar methods yield the energy demands for the lactating pregnant pottion of the herd
and the dry cow herd. These equations are shown below;

QSIEY =ome Z(PLl (+ PR+ PEE 4 PEL) H

9
= (PE + PEE + PB )Il”“'?(ln‘z,l’h“ M

=3

once again as PE), PEE, and PE! do not depend on the interval after calving we have,

‘ 9 :
@50 B = (PR 4 PEE + PEOHM 4 oty D7 Ly, M,
. =3

and
L3 |

20> =ogc Z (PE + PEE, + PE) H;
i=10

as PEP, PEE, und PE{ do not depend on the interval after calving and by rearranging
1 Sl

equation 26 and substituting for o¢ Z H; from cquatmn 23 we haw:,
{=10)

12




From the above representations for the energy required by the different energy
categories within the herd we can derive an equation for the total energy rcqum.d by the
dairy herd in one month,

@7 1:3*;* i ﬁ?" s g0

"'i

= (PEm + PLf‘)N HM + 0&1(721‘L i
. j=()

g | ¢ nki’l‘ P
+(Pr51 +PE“+W:§3 H, +oo,¢2b‘ i My

: 9

Mn;*”ll“" Tawfﬁ,“ u“annf'ﬂ“ +ocrc21,,, Hy,+1"P P
Pmll i~‘§ :

ey =g n”’ HY 2™ 0P 4 o Z}LM H
im0

where (PF"‘ + PE"’)NP = m”’ ). (sz"‘ + PEE 4 PEOP- = (n‘f"*); and (PEM + PEE +
, PE”“ (n ). ‘

As the dairy herd is made up of groups of cows in various stages of lactation, the total
‘milk production is the sum of the number of cows that calved i periods previously
‘multiplied by the production of these cows. Thus, the total milk production in ahy one
month, Y, is the average monthly total calving rate (oipe) mulhplxed by the number of
cows and their lactation yield.

28) Yi=otre Z—’M Hm
i=0

By subshtuhng Y from eqmtmn 28 into cquauon 27a we can define the toml dem.md
~ forene gy Et as,

29) E" = PN gl *H"'* +1IPHPP 41y,

13



nd by wearrunging equation 29 we g can derive the milk production function in terms of
2nergy.

‘[;;

This last equation provides us with a produetion function for milk in terms of the

cnergy requirements and the herd sim‘, and tells us that milk will only be produced if
there is a surplus ol encrgy, a>ove the requirements for maintenance, weight changes,
and foetal growth, available to tie dairy herd, An alternative interpretation of equation

30 iss that milk production is the difference between encrgy supply and energy demand

weighted by the energy value of milk, T,

If we assume that all energy supplied in period t is consumed over all demands, that is
cnergy supplied equals encrgy dcmnndcd then we can substitute equation 17 into
equation 30 to yield a maximury milk production function such as follows;

“1 HN’ “l;)H“’* n,y l‘li’n
T

(31)\’;-—

This milk production function tells us the maximum amount of milk that could be
produced if all available feed is consumed, however this is usually not the case, thus
the total yield of milk of the dairy farm will be less than Y. From the definition of Ef
we can show that total milk production is a function of various lags of the state variable
H, . the lag of the pasture energy stafe variable, ES*¥™, and the control variables §
and § ;.

(32 Y= Y BV H H H W W H 3 HM, Hos H o H g Hog Ho g
Hijo Hepi S 8¢

or alternatively
(322) Yi= Yo (ESP™™, Ho 1200411 S, S )

Revenue and Cost Funetions

.....

ined by the amount of quota milk, Yq and manufacturing milk,
Y7, sold, the net prices per litre of these two types of milk, Pq and P"' and the costs of

Ddul? revenue is determ

14



acquiring, or returns from disposing of, milk quots, (% Pq and P}" are prices net of

the variable costs of producing a litre of milk. Thus we have;
At =PI el YR G Y- Y

Y4 i the amount of guota the farmer holds in period ¢, and Y5 is the allocation of
quota the farmer has in the same period in the previous year, we are assuming that the
farmet can purchase quota, for the supply of quota milk in period t, any time between t
and t-12. This function, ¢ (Y- Yy s the costs or revenue generated from trading
in quota, Now we also know that Y, =Y + Y or alernatively Y = Y, - Y{, hence

we can substitute this into equation 33 to get,
= POV PO - Y - v Y )
SV B, BV GO Y
34 =@EPM YR PR, - Y

and from cqualmn 3a we know that Y, is a function of the control variables S and S,

. Therefore we can write the milk profit function in terms of the control variables of
quom levels and the stocking rate, and the herd state variable 1 ;.

@5 o =2l (v YL 8, 8 He =000

The profit generated by the livestock operation in cach period depends on the prices
received for the types of livestock sold, the number available for sale, which is a
function of the herd size, and the weight of the cull cows, We are assuming that the
prices in the livestock profit function are net of marketing costs, thus there are no costs
explicitly defined in the profit equation. |

(36) my" = [0.5 oy Hy(Ppct 02 Ppe) + ‘ﬁ})]A'

The first term in this function, (0.5 & Hi(Ppet 0z Pye)); defines the total number of
calves sold each month, and is deteimined by the number of live calves born, o, and
the number of heifers needed for rcplacememz«, in the herd, op. Not all hmfer calves
born are kept as replacements for several reasons. First, the number born may exceed
‘he number réquired 1o keep the herd in a desired state. Second, some female calves

15



may have undesirable physical or genetic characteristics, which require their removal
from the herd. Py and Pye are the prices received, in dollars per head, for bull calves
and heifer calves, respectively. ‘

The profits from culling cows,‘n?g the second term in equation 36, depends on the
weight of the cull cows, which will differ across age classes and the number of culls
from these classes, which depends on the culling parameter 6{ It will be assumed that
the weight of cows within each age group is constant, but differs across age groups.
Therefore, the profit from cull cow sales will be: ‘

n

o
(N n? = Pb}ﬁi,\vl H%

J=2

The costs of producing pasture will be a function of the area of the pasture, the type of
pasture sown and the annual maintenance costs of the pasture. Hence, the pasture costs
will be independcﬁt of the stocking rate, and could be treated as a fixed cost in an
optimisation problem with stocking rate as the decision variable. As we are assuming a
constant area of each type of pasture, A% we can define the total pasture fpmdyucﬁon

costs, Cf" as;

n
38 = Y, XA
x=1

waere Clis the annual cost of pasture production of pasture X, including maintenance,
and A‘is the area of each pasture. Hence, ‘

n
(9) A= D, AY
x=l
and n is the number of different pasture types.
The costs of feeding supplementary energy to the dairy cows will depend on how much
extra energy each cow needs, the number of cows on this feeding regime, and the cost

per unit of energy. "This relationship can be represented as follows;

(40} CF = C° F(H, - $) X° A
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where C"is the cost pé(‘* kilogram of the supplementary ration, Fis the weight of the
ration that yields one megajoule of enct Y. (i, kg/MJ), the third term (H; - s}) is the
stocking rate of the herd on supplcmmlml feeding, X*is the total energy required per
head of the stocking rate. A different intetpretation of (he equation cari be that the first
terms C¢ F* represent the cost per megajoule of energy and (Hy - 8) X*is the total
amount of energy required to supplement the ystocki.n'g rate on feed, ‘

Equation 40 is also a function of the control variables S, and X5 and the state va. uble
H,. which means that the amount and cost of supplementary feeding will be dependent
on the solution to the profit maximisation problem.

The Objective Function Revisited

Now that we have explicitly defined each of the components of the objective function,
we can now redefine the ubjective function in a more complete form. By substitution
from equations 34, 36, 39, and 40, the objective function of equation 32 can now be
rewritten in terms of the state variables H and H{, and the control variables Y{, X",
S, and §

(41 MNPV = z(m”g vl s, 8.0 X5 H )+
-3, X5 - D

This form is now suitable for use in a profit maximisation problem with the objective to
maximise the net present value of current and future profits based on the stm:kmg rate
decision variable, ‘

Discrete Optimal Control and the Farmer's Froblem

From the functions presented in the previous and the current chapters we can see that
the farmer's problem is now a furiction of the state and control variables which is the
same functional form as that required for solution of a discrete optimal control problem
as discussed in the second section of this chaptet, The only requirements now to fully
define the problem, as shown on the second section, is to specify the initial and
terminal values of the state variables energy and total herd and to spesify the equations
of motion for the state variables, energy and herd size, The ener gy equahon of motion
was defined in chapter three but we will repeat it here for convenienice;
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@2 B = B EXYD, 8 )+ B (H, S,)

The equation of motion for the total herd size can be derived from the definition of the
herd structure given in equation § We know that the equation of motion is the
difference between the current and pxcwmls petiod's herd structure, or in other words;

W3V - H = - o) - 6‘,)(0 Sty Llit W+ (-8 Zu

(44)

kel

' 11
A1~ 5‘ 8*1 }1‘( 2 (H - 1 a;a)(l - ﬁg)(ﬂﬁa‘; zﬂm,k)

!
+(1 - 5@ Hmmwl 5332‘2‘“{11“

Ck=l2 S

= {1~ 0ald - 5”“0 '5‘11’)”5; Hep) +(1 - &i) (lh 2" Il(’;ﬂ +

(-8, 8 x,)(z,n an,k

k12 k=l

= (1= )] «~~6§,’ 10, sm)(’m o)+ (1 -8l ml - WO )+

- B Zu Zu’

]{w\ ’i

= (-an - - 0. mnmp Hi2) # (1 - 83) (5, - HEy )
u—'a‘,«afjxﬂf*ﬁ ) § = 2ul

Therefore the equation of motion for herd size is a function of the herd size and
structure lngg_,cd various periods prior to £, Or in g,c‘neml form;

(4.23) H = I*l,(Hl,].»l'Im HO O HL HE L

a1 2

Finally by assuming that the mmai and temim.sl values of the state variables have some
real number values B £ and B and, £' and H' respectively we can now define 1k

optimal control problem as ‘ml!ows;

(45)M'mNPV 2 (Hr)t{" 9§ 8.0 X% I{,HMHQ

gci‘( 5, %% H)-C7 )
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KE( E‘ ['E‘(xda?) ([j‘(xt)'v?) ) + EB (]_‘ h)})
A, - e B, HY D
BRIt m

subjeet to

F e
Iﬂmﬂmdme

amd :
H?) = H" and l}l“T =H'

where A and K“‘ are the adjoint variables for the energy and herd sub-systems,

respectively

Equation 45 demonstrates that the objective function of the dairy farmer can be

specified as a function of the state variables herd size at various lags and energy
available from pasture and forage sources, and the control variables, the current and
previous stocking rates, and the amount of quota held in the current period., This
specification i ideal as the optimal control model can be campletely defined in control
and state variables,

Conelusion

In this paper we have developed a diserete optimal control model that provides the
framework for a dynamic model of a dairy system. This model is based on the
dynamic interactions of all the sub-systems of a dairy farm, these sub- -systems being
the herd dynamics, and energy demand and supply of the dairy herd. Each of these
sub-systems were analysed individually and were shown to be functions of the control
and state variables. The herd dynamics equation is merely a function of the herd state
variable at various lags, the energy demand system is also a function of the herd state
variable, and the energy supply is dependent on the energy and herd state variables and
the current and previous levels of siocking sate control variable. We have also
demonstrated that the milk production function summarises all the biological processes
of the dairy system. ‘ ‘ :
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