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Introduction

An emerging line of research suggests the possibility of replacing crop revenue
insurance for US farmers with markets for options contracts tied to the realization
of farm revenues. The derivatives markets can be shown to address concerns of
basis risk, while removing participation subsidies to insurance carriers, and they are
robust to keeping (or not) the large scale transfers via subsidy which are currently
in place. In research I presented at the SCC-76 risk group annual meeting in March,?
it is shown that a derivatives market leads to unique no-arbitrage prices in a general

equilibrium setting. A key contribution of that research is introducing a new

1 Working title at time of abstract submission. Likely re-title: Reference dependent preferences in
financial markets.

2 The Annual Meeting of the SCC-76 "Economics and Management of Risks in Agriculture and Natural
Resources" Group, March 15-17, 2012 in Pensacola, Florida.



technique for estimating the equilibrium options prices arising from a known
probability distribution of revenues, the underlying asset to the options.

The next logical step is to invert this process and apply it to financial markets
data, thereby deriving the ‘agreed’ underlying probability distribution of returns
from observed options prices. However, the ability to invert this process requires an
intimate understanding of the risk preferences of market participants and the
distribution of those preferences within the population. In the aforementioned
study (and in many similar ones), the existence of a financial assets general
equilibrium requires an assumption of a concave utility function over wealth. The
assumption is problematic because it forces risk aversion over all gambles,
contradicting the research in areas of prospect theory and loss aversion, and it rules
out the presence of speculators or professional traders known to exist in, and
influence, the marketplace (Allen, 2001), who may be risk-loving or have irregular
preferences for skewed returns. Thus, while we would like to back out the behavior
of market participants in search of some common ‘agreement’ on the underlying
probability distribution of returns, the assumptions that might allow us to do so are
unpalatable and would likely lead to inconsistent or incorrect results.

In the present article, I present a simple model of a two-period game, which
can be solved for a general equilibrium under certain conditions and assumptions
about risk preferences. The model compares and contrasts the results obtained in a
financial exchange economy under an assumption of expected utility maximizing
agents, with concave utilities over wealth, against the results arising from a model of

loss-averse agents with non-linear probability weights, as described in Kahneman



and Tversky (1992), and Shumway (1997) among others. The necessary conditions
do provide some strong insight into how we might expect options prices to appear
when investors are loss-averse, but we show in a simple case of two agents and two
states of nature that no equilibrium can exist except a degenerate one.

The next section provides more background on the problem at hand, and the
unsuitable aspects of existing approaches. This is followed by a brief review of how
loss-averse utilities are modeled. Following that, we introduce a simple exchange
economy model, and characterize the equilibrium, first, with a standard expected
utility approach, and then, with an approach assuming loss aversion. Given
observations of departures from expected utility in in actual options markets, we
develop the loss-aversion model to gain better explanatory power for observed
market phenomena. However, the non-existence of non-degenerate equilibrium
ultimately leads us to conclude that perhaps an ex-equilibrium analysis is necessary
for the proper evaluation of risk preferences in financial markets.

In the concluding section, [ discuss further steps in this line of research. In
particular, the implementation of numerical solvers for larger dimensional versions
of the basic general equilibrium model, or of agent-based modeling to simulate live
trading, to at least produce an intuition about how market prices equilibrate
(and/or evolve) when all agents actually do behave according to the loss-averse
preferences described herein. Finally, I discuss the design and execution of a pilot
financial markets experiment, which removes market imperfections and

information asymmetry as obstacles to evaluating risk preferences.



Why study financial markets to learn about risk preferences?
We focus on derivatives markets, particularly options, because the wide range of
strike prices potentially allows for evaluating risk preferences over much of the
support of the underlying utility function. The assumption of no arbitrage in
efficient markets also forces options prices to reveal an underlying ‘risk-adjusted’
probability distribution, since no arbitrage implies that equilibrium prices must be
actuarially fair according to some probability distribution equivalent to the
underlying physical/actual distribution.3

Using an Arrow-Debreu exchange economy model (a simple general
equilibrium framework), DeMange & Laroque (2006) showed a key relationship
between the aggregate level of wealth and the equilibrium no arbitrage price. This
relationship is summed up by the equation (a first-order condition):

w'=A-u,

where u' is the first derivative of the utility function, A is the shadow price of the
agent’s budget constraint (arising from asset endowments) in the utility-max

Lagrangian, and u, is the ratio of the equilibrium price, g, , to the actuarially fair
price (probability), p, , of state n. Given increasing, concave utilities, unique
equilibrium prices are known to exist, and A is constant for each agent, implying a
monotone increasing correspondence between the equilibrium state price, ¢, , and
u'. This implies that state prices are higher when u' is higher, corresponding to

lower wealth - according to the assumption of concave, increasing utility.

3 Equivalent is defined as a probability distribution having identical regions of zero
and non-zero support over its domain.



Finally, since the state prices must sum to one under no-arbitrage, we find
that low-wealth states will have higher state prices than actuarially fair (i.e., as
indicated by the underlying probability distribution) and high-wealth states will
have correspondingly lower state prices than fair. This is borne out in the options
prices, as discussed below. However, the implications of this analysis are not robust
to misspecification of the utility function. If agents’ utilities include regions of
convexity (risk-loving), then there could be non-unique or non-existent equilibrium
prices, and any equilibrium prices that do exist could behave pathologically. Namely,

the relationship between ¢, and u' might imply negative risk premiums where

high-wealth states of nature have prices above actuarially fair. Since there is some
evidence of exactly this phenomenon in options markets, we will explore this point

in more detail below.

Why can’t we just use trading data from options markets?

First, apparently pathological behavior. Standard expected utility models, those
which assume a summation over probabilities and which assume an underlying
utility function which is concave and increasing in income, clearly do not tell the
whole story. In a general equilibrium setting, it can be shown that preferences
according to these models generate an intuitive set of prices, whereby the party
taking on risk must be paid a premium by the party hedging it away. However, in
options markets, the absence of arbitrage coincides with these preferences to
produce prices that are systematically different from actuarially fair. In the finance

literature, the alternative probability distribution which characterizes these prices



is known as the ‘risk-neutral’ distribution, though perhaps ‘risk-adjusted’ is a less
confusing moniker.

[t is not only that the equilibrium prices may be different from their expected
value, but that the equilibrium price of the underlying asset, as well as the prices of
all call options, will be below actuarially fair, while the prices of all put options will
be above actuarially fair. These are perfectly reasonable conclusions from the
expected utility model, but they simply do not match what we observe in financial
markets.

Alternately referred to as the volatility skew or volatility smile, it has been
well documented since the 1987 crash that put options trade at a risk premium - a
risk premium which is increasing as strike prices move further out of the money. To
be clear, this risk premium is increasing as a share of the actuarially fair price; it is
not increasing in absolute level. The name ‘smile’ seems to arise intuitively from the
use of the Black-Scholes options pricing model, which assumes the underlying
asset’s price process to be a Geometric Brownian Motion (GBM) and reduces each
option price to a function of the volatility (standard deviation) of that process. This
model therefore ‘explains’ the departures from log-normality in the left-hand tail of
the distribution as another log-normal with higher implied volatility.

This skewed distribution of returns relative to log-normal is one of the
standard justifications for a model of risk averse investors (among other arguments,
like the CAPM). However, this phenomenon is substantially more pronounced for
‘downside-risk’, where investors fear a loss of wealth relative to the reference point

of the current price of the underlying asset. Beyond the evaluation problems



inherent in reconciling market prices to the ‘actual’ probability distribution of
returns, there is a lack of agreement about whether market prices are above or
below actuarially fair, and by how much, when evaluating options near the money,
and out of the money (OTM) calls (e.g., Jackwerth, 2000; Coval and Shumway, 2001).
As a result, it may be questioned whether everywhere concave utility functions are
really appropriate for modeling investor sentiment towards market risk.

In addition to the challenge of evaluating risk preferences outside traditional
models, there is the issue of evaluating them through the filter of financial markets.
With regards to data quality, one would hope to obtain (at a minimum) market
prices (and trade quantities) of options over a set of strike prices, though in an ideal
situation, data could be had on every bid and trade of every market participant.
However, even in the ideal situation, there remain issues of market power,
transaction costs, access to markets, and information asymmetry, which can distort
observed prices and quantities away from theoretically predicted equilibrium
values. Each of these real world challenges thus acts as yet another barrier to
evaluating risk preferences with data from actual financial markets.

Finally, the largest obscuring force is probably aggregation (Campbell, 2000).
Without the ability to observe and track individual market participants, all that
remains are faceless trades of a representative consumer. While some smoothing
techniques may help to identify ‘equilibrium’ prices from anonymous market
transactions, the practitioner is left to piece together preferences with very little
help. Constantinides (1982) and others since have helped identify to what extent a

representative consumer approach can help to tease out individual preferences,



especially when all agents have convex preferences (i.e., concave utility functions)
and when they deal adequately with evaluating probabilities. The observational data
we have described above are not consistent with these preferences, so further work
will be needed. Nonetheless, the representative consumer model coupled with our
observations about price distortions can rule out the possibility that every agent in
financial markets is an expected utility maximizer with a concave utility function,
opening up the possibility to explore other approaches regarding decision-making
under risk.

The next section develops an economic and financial framework of farm
revenue securities and options, and implement a model of a financial exchange
economy to establish options prices and risk premiums vs. actuarially fair. We
develop a classical exchange-economy equilibrium framework using financial
economics and no-arbitrage pricing theory (particularly, Varian 1987, Karatzas et al.
1990, DeMange and Laroque 2006, and Delbaen and Schachermayer 2006), and use

it to parameterize equilibrium prices and demands for financial assets.

A Financial Market Model of Options Trading

Pricing by No-Arbitrage. Consider an asset with an uncertain payoff, for example,
ownership of a share of stock (though for simplicity, it pays no dividends). At time O,
the asset has a market price, S,. At time 1, the value of the asset is given by the

realization of a random variable, S, representing the prevailing market price of the

stock. The ex ante market price S, need not be equal to the expected value of the



stock price, E[Sl], and because of risk aversion in the marketplace (under the

traditional expected utility model) we would expect it to be lower. Assume that the

random future stock price variable, §,, takes on a finite number of non-negative
values, which represent dollar denominations. Formally, S, is mapped to a finite

probability space, (€2, F, P), where Q is the set of all possible stock price outcomes, F
= 2% is a filtration (in this case, the set of all its subsets), and P is a probability
measure. Without loss, we assume that all outcomes @ € Q have strictly positive

probability.

Now, consider an agent purchasing a European-style put option with strike

price, K. Once §, is realized and the stock price outcome is known, the agent is paid
only if the realized price is below the strike (S, < K). If this occurs, then the writer

pays the difference, K —S,, to the agent, in effect restoring him to a guaranteed level

of wealth. We denote the value of this payment as (K ) )+ = max{O,K - Sl} A

In order to evaluate how a simple market for these options might work, we
make a number of assumptions. First, we assume that markets are complete and
frictionless. That is, any agent can trade options at any strike price, the number of
contracts exchanged is real-valued and perfectly divisible, and there are no
transaction costs, information asymmetries, or distortions caused by market power.

Second, we assume that there are no opportunities for arbitrage. This is the classic

4 We have chosen our notation deliberately to match the options standard notation in the
finance literature. Any options referred to in this article are European-style options; there is
no possibility of early exercise. Please see Part 1: Basic Option Theory in Wilmott et al.
(1995) for a thorough review.



assumption that there can be no risk-free profits, which implies that any financial
portfolios with identical payoffs in all states of nature must have the same cost. A
common justification is that agents exploiting arbitrage opportunities will bid prices
up until the opportunities disappear, so that no arbitrage opportunities can exist in
equilibrium. For clarity of exposition, we also set interest and discount rates equal to

Zero.

Our assumptions of no arbitrage opportunities and market completeness are
quite powerful: complete markets assure a complete set of Arrow securities,

denoted 1,, paying exactly one dollar in state of nature n and zero otherwise

(DeMange and Laroque, 2006, among many examples). Since replicated payoffs
always have the same price, all possible contingent claims are priced at time 0
exactly equal to the sum of the prices of the Arrow securities needed to replicate

them. Following the literature, we dub the prices of the Arrow securities as state

prices, g, =qn(1n). By no arbitrage, all the state prices must be strictly positive
(g, >0) and they must sum exactly to one because buying one of each will pay one

dollar with certainty (the price of one dollar in the future period, under our

assumption of a zero interest rate).

.....

function, which we will refer to as the risk-adjusted probability measure, Q. The
measure Q is known to be unique, given complete markets with prices not subject to

arbitrage (Delbaen and Schachermayer, 2006). Accordingly, the price of any



contingent claim is equal to the weighted sum of state prices needed to duplicate its
payoffs, which is simply the actuarially fair price under Q. Returning to our model,

this means that the ex ante price of the rights to crop revenues must be equal to its

fair price under this alternative probability measure, so S, = EQ[Sl]. However, even

though the measure Q is unique as a function of the no-arbitrage prices, the prices
themselves are not guaranteed to be unique (Varian, 1987): for this we must turn to

a model of risk preferences in the marketplace.

In what follows, we evaluate equilibrium in the context of the two-period
game outlined above. The efficient markets hypothesis tells us that markets
instantaneously equilibrate, so our two-period model is simply the evaluation of
markets at a fixed point in time before new information arrives. Not using
continuous-time trading and stochastic processes offers two distinct advantages for
our purposes here: 1) we are able to take a completely non-parametric approach
with respect to the asset returns (don’t need to assume normality/log-normality),
and 2) as a result, we can directly estimate risk premiums in options prices across
all strikes, without resorting to approximations derived from the moments of the

returns distribution.

A Simple Model of a Financial Exchange Economy. Consider an economy in which
the only assets are cash (which is riskless, but pays no interest), the underlying
security, and the complete set of options contracts, where the probabilities of all
states of nature are known. In what follows, it will become clear that even if shares

of stock cannot be bought and sold (e.g., only options are available), complete,



arbitrage-free options markets are sufficient to force an equilibrium asset price at

time 0.5

No arbitrage and complete markets allow us to consider everything

denominated in terms of the Arrow securities, 1,. The economic agents, J =1,...,J,

have endowment vectors y]:{ynj} , over the states of nature, n. For those

n=l,...,
agents not holding any shares in farm revenues, we model them as holding only cash
- equivalent to holding equal amounts of Arrow securities across all states. Agents
who hold shares of stock, on the other hand, have larger amounts of endowment in
‘higher’ states (where the period 1 stock price realization is higher), and smaller
amounts in ‘lower’ ones. Given an endowment, the agents can sell their endowments
(or even take a short position for securities they do not own) to purchase other

securities, subject to a budget constraint defined by the initial endowment.

The Expected Utility Model. We start by introducing the results of the basic
expected utility model, before moving on to the more complex results with loss
aversion. To simplify the model, there is no utility at time 0, and every agent strives
to maximize expected utility at time 1, over an increasing, strictly concave utility

function of wealth. Market participants maximize expected utility according to a

5 The no-arbitrage assumption implies a property of derivatives markets known as put-call
parity, which maintains the relationship C + K =S + P for all strike prices, K. This formula
allows for constructing “synthetic” ownership of the underlying asset, without actually
being able to purchase it. Allowing the asset to be bought and sold preserves the original
nature of options, which confer the rights to buy or sell the asset at a specific price.
Certainly, options contracts can be (and often are) cash-settled, so allowing trading the
assets themselves is a stylistic choice for our modeling approach. In practice, there may also
be the social objective of market liquidity, which would benefit from allowing trading in the
underlying asset.



budget constraint given by their starting endowment:

BEM
U =1, N n

o BT+ Ta ()

where p, is the known state probability, g, is the state price, and x, is the

individual’s chosen consumption of (demand for) the Arrow security for state n
(which may be a different amount than his endowment). The first order condition

for each x, gives:

u'(xnj)z ﬁ”

J

where we have generalized the state prices as g,=p, M,, and where 4, is a

positive weight translating the physical probability under the measure P into the

risk-adjusted probability under the measure Q (that is, u, is the inverse of the

Radon-Nikodym derivative, dP/dQ). Thus, we obtain the formula:

Strictly concave utilities imply that the first order conditions are necessary
and sufficient for existence of a unique equilibrium, provided the utility functions
are sufficiently regular over their domains. These results are standard and well
established in microeconomic theory; all we have done is generate an exchange
economy of Arrow securities, with increasing, concave utility functions and

heterogeneous endowments. To make progress in solving for equilibrium prices, the



utility function must be known. We assume each agent has a constant absolute risk
aversion (CARA), exponential utility function, with risk aversion coefficient, a; :

—exp(-a, )

a;

u,(x)=

Substituting in this utility function, the first order condition for each x, thus

reduces to:

capy _ My . - InA, —Inu, .
Z’j nj aj

So, even though we need to solve for N x ] equilibrium demands, these are

each composed of only the equilibrium weights, j, , and each agent’s shadow price
of wealth (the Lagrange multiplier), 1/4;. To solve for equilibrium demands, we

must solve simultaneously only for the N state prices and the ] shadow prices (N + ]

unknowns, instead of N x J). The constraints are given by:

M Y.q,(w,-x,)=0Yj
(2) Z(wnj - xnj) =0 Vn

3) X9, =1

The first set of constraints assures that each agent’s budget constraint is satisfied
with equality, which must hold in equilibrium if agents are utility maximizers. The
second constraint requires that the financial instruments are in zero net-supply,

that is, that total consumption is equal to the total endowment in each state of



nature. The final constraint recognizes that prices are only unique up to a positive
multiplicative factor, and forces the unique, no-arbitrage, equilibrium prices.

The equilibrium state prices, ¢, , imply unique option prices according to the
risk-adjusted probability measure, Q, which can then be contrasted against
actuarially fair prices under the physical probability measure, P. Using summation

by parts, the prices of options can be explicitly calculated:

P, =E,[max{0,K - S}]

=24, (K-,

n<K

=Y > q,A0,

n<K

where @, denotes the realization of stock price in state n, and the differential term,
Aw,=w,,,—®,>0, is always positive because the ®,’s are arranged to be
increasing in n. The market/equilibrium (risk-adjusted) price of the options is given
by the double sum over g,, whereas the actuarially fair price, P, , is simply the
double sum over p,.

Letting P, denote the put option priced at actuarially fair, the risk premium
is given by: (PK —ISK)/PK . In a working paper, Sproul and Rausser (2012), showed

that the preferences described generate positive risk premiums which are
decreasing in the strike price (as a percentage, as defined), though the absolute
amount paid above actuarially fair to offload risk, P, — P, is increasing in the strike
price. To the contrary, the concave utility functions described induce negative risk

premiums on call options, which are price reductions below actuarially fair. The call



options trade below actuarially fair because an agent not holding the underlying
stock must be compensated for taking on risk when buying a call, and agents who do
hold the underlying are willing to pay to offload their risk when writing a call. The
call options have the opposite trending characteristic, where the risk pricing
distortion (percentage) increases in the strike price, while the absolute amount paid
to offload risk decreases as the strike price rises. As we discussed above, put-call
parity allows for synthetic construction of share ownership by buying a call and
selling a put option, so the synthetic share price in Period 0 (and by no-arbitrage,
the actual share price) is subsidized by the sum - a constant amount over all strike
prices - of the dollar risk discount on the purchase of the call option plus the dollar

risk premium (amount, not percentage) on the sale of the put option.

A Model of Loss-Averse Value Functions.
As discussed in the introductory sections, the patterns of risk premiums outlined
above do not coincide well with documented, consistent price deviations from
actual returns. While it is well known that buying out of the money put options
produces strongly negative returns, this is the only price deviation pattern
consistent with the von-Neumann Morgenstern (vNM) concave expected utility
model. Coval and Shumway (2001) document positive returns for call and put
options at intermediate levels of ‘money-ness’, and Jackwerth (2000) documents
consistent negative returns at some levels of out of the money call options.

All of these patterns violate the vNM expected utility model, but all are

explained consistently within the standard loss aversion framework of Kahneman



and Tversky (1992). Specifically, we refer to their documented ‘fourfold pattern of
risk attitudes’ which appears over and again in experiments, and seems to show up
in options markets as well: the interaction of non-linear probability weighting and
loss averse value functions leads to risk-averse behavior for rare/low-probability
losses (including extreme ones), and for moderate to high probability gains (usually
smaller). Similarly, the loss-averse specification implies risk-seeking behavior for
low-probability gains (including large ones), as well as for moderate to high
probability losses, including more frequent losses of smaller size. Coval and
Shumway (2005) document exactly these patterns in bond-trading market makers
at the Chicago Board of Trade (CBOT), who demonstrate characteristic loss-averse
responses to fluctuations in intra-day profitability.

Given this background, consider the following model of reference-dependent
preferences introduced by Kahneman and Tversky (1992) and generalized (beyond
our purposes here) by Koszegi and Rabin (2006). We describe the value function as
a power function characterizing the phenomenon of ‘diminishing sensitivity’,
exhibiting a kink at the reference point and loss-aversion:

v(x)= (x=r)" x> r

—A-(r— x)b r>x
where a,b e (0,1), A >1, and the first derivative is not continuous at the reference

point, x =r. From the psychology and economics literature, A =2.25 is a standard
estimate (population median), as is a =b =0.88. We will adopt the convention a =5

in what follows to simplify notation.



Beyond the value function, the other piece in the puzzle of fourfold risk
attitudes is the tendency of decision-makers to weight probabilities non-linearly.
This weighting is approximated by Kahneman and Tversky (1992) and many others

as a monotonic increasing two-part power function, with distinct coefficients, y and

&, applied for weighting gains and losses, w*(p) and w™(p), respectively:

Y )
w(p)= P — and w(p)= P

(p +a=py)" (p+0=p))"

A common approximation (including in earlier versions - 1979 - of their own
theory) is to set w* =w™, even though y and 6 have been estimated at 0.61 and
0.69, respectively. In translating these weights to our previous model with physical

probability measure P, we will denote w; =w"(p,) and the same for w; . The key
challenge of modeling y and 6 distinctly is that these weights are conditional on

whether a gain or loss is occurring relative to the reference point in state n, and this
outcome is endogenous to the financial market trading decisions of the agent. We
will explore the implications more carefully in what follows.

Returning to our model of Arrow securities (arising from a complete options
market), agents seek to maximize their value function relative to a reference point.

That is, they seek to maximize:

max, ,V, = zw V(( )) ZW V(( ))

o . n

where the “+” and “-” superscripts inside the value function denotes that the x,, —r

term is non-zero only if it is positive or negative, respectively, and the “+” and “-”



superscripts on the weighting terms, w_, indicate the possibly different gain-loss

probability weights.

A challenge immediately arises of how to evaluate the reference point. For
example, given perfectly liquid markets, any portfolio could be liquidated at cash
value and used to purchase equal amounts of Arrow securities in all states - yielding
a fixed income with certainty in Period 1. Does it make sense to use this cash value
as a reference point? The simple answer is no. Using the cash value as a reference
point is only appropriate if the agent starts out with an ‘all-cash’ constant portfolio
of Arrow securities across states. Extending beyond our model to dynamic time
considerations, we recognize that for an agent to hold a non-constant portfolio he
must prefer it to cash in some sense. However, in the simple two-period game
described here, we focus on trading choices given an initial assigned endowment of
Arrow securities, which may or may not be constant across states.

Given the status quo preference implied by loss aversion, it certainly does not
make sense to benchmark portfolios to their cash value (or any fixed value) because
the constant benchmark would get the reference dependence wrong. A simple

example here should suffice. Consider an agent switching from a portfolio, x;, to
another portfolio with fixed value, y, and back again. The value of this double-
switch is given by V(y;x)+V(x;y) which is shown to be less than zero in the

equation below. This non-transitivity of preferences is exactly why any constant

benchmark cannot work.



V(yx)+V(x;y) = z wr -v((y—xm.)Jr)— z w, -l-v((xnj —y)+)

+%w2 .v((xnj —y)+)— ,,;'yw’: A v((y—xnj)+)
=(1- ),).[}Z‘yw: -v((y—xn_,.y)— Z‘ng .),.v((xn_,- —y)+)j
<0

Under this limitation, it remains to properly evaluate the reference point
when that reference point is a lottery, i.e.,, when an agent is assigned a non-constant
portfolio in Period 0, so they start out expecting a stochastic outcome. Koszegi and
Rabin (2006) assert that the realized outcome in any state is to be compared against
all possible reference states according to their distribution, because agents do care
about ‘what could have been’ in their reference lottery. Given a stochastic

endowment, y, their claim amounts to evaluating:

V(xy)= z]w;.v((x,,j_xa[y])*)_ Y o 2((BD]-x,) )

n'.x>]E[y n:x<E[y]
where E[y] is presumably evaluated according to the perceived distribution of
outcomes in portfolio y.

However, if the fourfold risk attitudes of Kahneman and Tversky are to be
believed, then we are presented with a dilemma of defining the correct probability
distribution. Koszegi and Rabin favor using the physical distribution, P, which is
consistent with their model using linear probability weights, but for our purposes
here it seems logically inconsistent to use non-linear probability weights on a

prospect while using linear weights on a reference. Furthermore, as currently

defined, w; and w, vary according to whether the outcome is a gain or a loss, which



begs the problematic question: what is the reference point for the reference point,

y ? The problem here is, since the probability weights are tied up in any prospect’s

reference point, every stochastic reference point must itself be evaluated in terms of
areference point one step further up the chain.

To make progress, we employ simplified probability weights as in
Shumway’s (1998) working paper, where he verifies goodness-of-fit for loss averse
preferences in evaluating investment returns under a simpler version of the non-

linear weighting scheme, w . Specifically, like Shumway, we set y =6 so that

w, =w, =w, for all states n. From here, the resulting weights w, are consistent

n

across gains and losses, and so can be normalized to sum to one (like a probability

measure). In order to avoid further cumbersome notation, w, (p,) will henceforth

refer to this alternative probability measure, calculated as:

pV

Wn(pn) =
Y

pl+-py)" B
( ) ;(pha—pnv)/

-1

Py
wen (] +(1=p,))

=1+

1y

where the summation term forces the sum of the weights to one. While the formula
looks messy, it simplifies tremendously in some cases. For example, in the case of

only two states, it reduces to:

_ P
pl+p;



This formulation allows for applying Koszegi and Rabin’s (2006) value
function without the ad-infinitum nesting of reference points. Specifically, using the

new weighted probability measure, W, their formula becomes:
V(X;y) = Ewn .v((xnj -Ey [y]) )— Ewn A v((EW [y] — xnj) )

which has the convenient property of boiling down the reference point into one

constant value, E,,[y], the expectation under the distribution W. Accordingly,

agents solve the following problem according to a budget constraint, with the

Lagrangian given by:
max{x”j} V = an ’ v('xnj - IEW [y])+ ezqn .(ynj - xnj) 4
where 6 is the Lagrange multiplier on the constraint. Thus, for each non-zero x,; in

the agent’s optimal bundle, we obtain the following necessary first order condition:

v‘(xnj —Ew[y]) =

which is remarkably similar in general form to that of the exchange economy

equilibrium noted above. The first order condition simplifies to:

a(xnj - Ew[)’])a_1 =6 qu” or /l-a(—xnj + IEW[y])a_1 —gdr

n n

depending on whether the x,;’s are gains or losses relative to the reference point,

respectively. Recall that A is the loss aversion coefficient, while 6 is the Lagrange

multiplier. Letting I" be an indicator function equal to one if a loss and zero

otherwise, all non-zero x,;’s in the optimal solution are given by:



1

. 1-a _
xnj:(ﬂ,l ‘;Z”] +Ew[y]-(—1)I :

As noted above in the case of vNM expected utilities, the constraints of
budget balance for all agents and options contracts in zero net supply give a system
of N+J non-linear equations in N +J unknowns. However, in the case of reference
dependent preferences, the shape (and kinked nature) of the utility functions do not
guarantee the existence of an equilibrium - unique or otherwise. Negative
definiteness of each agent’s Hessian matrix of second derivatives of the objective
function would guarantee the unique equilibrium, but this condition cannot
generally be expected to hold. Nonetheless, the first order conditions do tell a story
about the relationship between resource scarcity and prices, provided an

equilibrium does exist. To see this, define the demand deviate, Axnj =X, Ewly], to

be the amount by which each Arrow security deviates from the reference point.

Then,

1

r -a-w, 1=
Ax, =(-1) -(/1‘ ) :

0-q,

where we recall from the preceding discussion that the Lagrange multiplier, 6, is

fixed for all agents, j, so any positive deviate (Axnj > O) will be decreasing in the state

price, g, , and increasing in the perceived probability, w, . The opposite signs will

hold for negative deviates (where the amount of Arrow security purchased, x ., is

nj’
below the reference point), so we can express these conditions - in terms of the

absolute value of the deviates - as follows:



g (as,

n

)> 0 and £(|Axnj

)<0.

Two immediate contrasts follow, between our reference dependent model and the

d

basic expected utility model. While in the standard model demand, x,; is decreasing

in the state price and increasing in the state probability, the preferences outlined
here induce different relationships that seem to reflect status-quo bias: the absolute
deviation from the reference point is increasing in perceived state probability and
decreasing in perceived state price. It remains to be seen how or whether price varies
systematically with aggregate income, as it does under the expected utility model (it
decreases). Given the potential existence problems we discuss above, we turn to a

simplified model of equilibrium to gain some basic insights.

Equilibrium Under Reference Dependent Preferences

In this section, we develop a simple 2x2 model (two agents, two states), to help
describe the set of equilibria under reference dependent preferences. Specifically,
we characterized two types of equilibrium, a ‘degenerate’ equilibrium where the

kink in the value function causes all state prices, g, , to equal the perceived
probabilities, w_, and all agents demand exactly their reference point in cash, and a

‘trading’ equilibrium, where agents potentially reach interior maxima of their value
functions. In what follows, we rule out the existence of any trading equilibria and
then show that the degenerate equilibrium only holds for one ratio of perceived
probabilities between the two states. The remainder of this article, up until the

discussion section, can thus be considered an exploratory proof of these statements.



Consider the following model of two agents with reference dependent
preferences, as described above, in the same two-period game as before. There are

two states of nature, with average endowments (half of the aggregate) of y, =y and

v, =PBy:B>1. The first agent (assigned arbitrarily) therefore has an endowment
characterized by ( y+Ay,By+ Ayz) , and the second agent’s endowment is given by

( y—Ay,,By— Ayz) , where the delta terms indicate deviation from the average

endowment. These endowments yield reference points of:

n=w-(y+Ay,)+w,(By+Ay,)
n=w,-(y=Ay)+w,(By—Ay,)

where the subscripts on r denote the agent, but the subscripts on y and w denote the
state. It will be useful later to note that r, =2w,y+2w,By—r,.

The presence of the reference point introduces a unique consideration,
namely, whether agents can actually afford their reference point. We will show later
that if q =w (actuarially fair prices, according to the perceived probabilities) then,
depending on endowments, we get the degenerate equilibrium where agents can
exactly afford their reference points and they do not trade. However, outside this
case, we have to consider whether the agents can collectively, or individually, over-
afford or under-afford their collective reference points. Collectively over-affording

will simply be defined as (q—w)-y>0.

Proposition: The agents can collectively over-afford their reference points IFF the low

state is underpriced relative to its perceived probability (q1 < W1)- Similarly, agents



collectively under-afford their reference points IFF the low state is overpriced relative
to its perceived probability (q1 > W1)- The proof follows from simple algebra, upon
examining the definition for over-affording.

Beyond the collective ability to afford their reference points, we are also
concerned with agents’ individual ability to achieve their reference points, a stricter
qualification. This qualification matters because inability to afford the reference

requires that an agent face a loss in at least one state of nature. Recognizing that g,

and w, are probabilities, agent 1’s affordability condition reduces to:

s =(g—w)(y+Aay-By-Ay,)
:(Ch _Wl)(yll _yZI)ZO

)

where the first term is signed according to the relative price of the low-state.
Similarly, agent 2’s condition is:

§ = (% _Wl)(Y12 _yzz) 20.
These two conditions show the simple fact that an agent having more endowment in

that state of the nature with a price higher than its perceived probability (aka

overpriced) implies over-affordability of the reference.

Thus, when the low-state is underpriced (q1 <w, ), implying the agents can
jointly over-afford their references, then the agents can individually over-afford
their references only if they have a higher endowment in the high-state (yzj > ylj). It
is possible for both agents to over-afford in this scenario, since the high-state has a

higher (average and therefore, aggregate) endowment, but doing so will require a

certain amount of balance between their endowments. On the other hand, when the



low-state is overpriced (q1 > wl) and agents jointly cannot afford their references,
then balanced endowments imply both under-afford individually while unbalanced
endowments will allow only the agent with a higher endowment in the low-state

(yl P>V j) to over-afford. Again, since q and w are probability measures, any agent

with exactly equal endowments in each state (holding cash) can exactly afford his

reference point. The following tables break down the relationship between

endowments and prices.

Low-state underpriced: g, <w,
Agent 1
Y=Y Y <Yn
N Yi2 > Yo N/A 1 over, 2 under
5
& | Y2<Yn | 1under, 2 over Both over
Low-state overpriced: q, >w,
Agent 1
Y=Y Y <Yn
N Yi2 > Yo N/A 1 under, 2 over
5
& | Y2<Yn | 1over,2under | Bothunder

With these relationships established, we turn to a more critical question:
whether or not agents can afford their reference points, which bundles do they
actually choose? Recall the Lagrangian of the value function, which agents maximize

with respect to their reference point while constrained by the market price of their



endowments. If we assume an equilibrium outside the degenerate case, then we
know neither agent is stuck at exactly his reference point in just one state of nature

(i.e, x,; =r, for one state and not the other) because the value function has marginal
utilities approaching infinity in the limit as x,, approaches the reference point. Thus,

we can be confident that a non-degenerate equilibrium will have a non-zero

Lagrange multiplier for each agent, 6, >0, because the budget constraints will bind.

As a result, we know that any non-degenerate equilibrium will involve

interior solutions for all x,,, so the first order conditions described above are

necessary for an optimum. Given the form of the value functions, we can re-write
and combine the first order conditions for both agents in each state:

Ax, = f(q.w)=k, - Ax,,,
where k, is a constant known to exist (given 6,,6,, and 1), and fdescribes the

specific features of the first order condition for state n. Consider this equation re-

written for state 1, for example:

1

0 a-1
X—h =|:m1—1:| '(xlz_rz)

6,

=X, —h=k '(xlz _rz)’
where m, € {1,—&,—%'} depending on whether either or both agents face a loss or

gain in state 1, and k, will vary accordingly.

Substituting in the enforced relationship between the reference points

(resulting from the division of the starting endowments, and the fact that the two



demands cannot exceed the state 1 endowment in equilibrium (i.e,, x,, +x, =2y),

we obtain an explicit solution:

k
Ax11:1+lkl'2)”(l+ﬁ)'wz; Ax12=ﬁ-2y-(l+ﬁ)-w2.
Similarly, for state 2 we obtain:
Ar. =K 2y-((1+ B)-w, + B—1); Ax =L-2y-((l+ﬁ)-w +B-1).
14k, 2 2 1+k 2

The signs of all the demand deviates are wholly dependent on the sign of the leading
fractional term. The table below gives the correspondence of these terms with m, .

1
Letting ® =(6, /6, )« >0, the relationships are:

m, =1 m, =—A2 m,=-A"
k, i) 19 1
_>0
I+k, 1+ A-0-1 1-1-0
1 1 1 A9
—_— _>0

where the second and third columns have alternating signs. In a given state,
m, =—A means a loss for agent 2 and a gain for agent 1, while m, =—A1"' means the
opposite. All other scenarios resultin m, =1, so we begin by showing that there can

be no equilibrium in this case.

CASE1: m,=1Vn.



A necessary condition for equilibrium when m_ =1 for both states is a setting where

each agent can over-afford his reference point, because every Ax, must be positive.

Given the tables above, it is also necessary that ¢, <w,,y,, <y,,,and y,, > y,, to

allow for each agent to over-afford the reference in each state.

This information allows us to re-evaluate the constant, &, . If every agent in

every state is experiencing a gain relative to his reference point, then the first order

conditions are nearly identical across agents. Specifically,

1

91 a-1 91 a-1
m =1Vn— Ax, = 9— Ax,; Axy, =|— -Ax,,,

2

1
where k, =k, =(6,/6, )+, which we will denote simply as k for the remainder of this

case. Taking the ratio of these conditions allows for further simplification of our

explicit solutions for the demand deviates:

Ax,, _ w,-(1+ ) _ Axy <1
Ax,, Wz'(l+ﬁ)+ﬁ_l Ax,,

where the inequality implies that the agents both exceed their reference points by a
larger margin in the high-state. Using similar techniques as obtained our explicit
solutions in terms of k, we obtain:

—h _An—h

-
Xu—h Xnp—h

(xll_rl)(zﬁy Xy +h— 2W1y_2W2ﬁy):<2y_x11+”1_2W1y_2w2ﬁy)(x21_”1)_>
(xll 1) 2y- (ﬁ W= WZ):(XZI_FI)'Z.Y'(l_WI_ﬂWZ)%
(xll ) (le _ﬁ)(l_ﬁ)wz



Now, this finding coupled with our previously established necessary conditions

implies that 0 < Ax,, = Ax,, -(—w,) <0, a contradiction because these demand

deviates cannot be both positive and also have opposite sign.

CASE2: m, #1.

Even when the agents are not both experiencing a gain or loss, the above relies on

the simple relationship between all four of the demand deviates:

1

Ax,, :(ﬂ)al'mlz

Ax,  \m, Ax,,
where if m, = m, then the derivations above hold, implying Ax,, =-w, - Ax,,, which
€
holds up to a constant coefficient, m=m, /m,, as Ax,, =-w, -m*" - Ax,, in all cases.

1
This necessarily implies the same for agent 2: Ax,, =—w, -m*" - Ax,,. Thus, the

relationship between m, and m, governs whether agents have a negative
relationship between their demand deviates across states. The following table

outlines the resulting value of m over the possible pairs, (m1 ,m, )

m,
Values of m 1 -1 .
1 1 -1 -2
- -2
m, _y . 1 A
A ) A2 1




Note that all of the diagonal cells where m =1 are also ruled out by the above

analysis, because they imply that Ax,, and Ax,, have the same sign, when they
cannot. It is also impossible that either m, or m, is equal to 1, but not both, because

this implies m <0, so one agent will have only gains or only losses, while the other

will have a mixture (Ax,;,Ax,,; having opposite signs) - a contradiction because

1j°

m <0 implies neither agent has a mixture of gains and losses, since in general

1

=W, -me - Ax, ;- Alternatively, this could have been demonstrated by

Ax

recognizing that (1/a—1) induces a non-integer exponent on m, so if m <0 then no
real roots exist and hence no combination of real-valued Axnj ’s offer a solution. Thus,

only two sub-cases remain (highlighted in the table), where 1#m >0, so one agent
gains and the other loses in each state, and a gain for an agent in one state implies he

experiences a loss in the other.

1
These two sub-cases still require the basic relationship, Ax,; =-w, -m*"-Ax,,

but we will show that this violates the principle of financial assets in zero net supply.
That is, we will show that these demand relationships imply that markets do not

clear by substituting in the market clearing constraint for agent 2’s demand deviates,

1
given agent 1 facing Ax,, =—w, -m*' - Ax,;:



1
Axpy =—w,-m - Axy,
€
=X, =T =—W, -m*! '(xzz —rz)
1

> 2y—x, —h=—w,-m! '(zyﬂ_le —1’2)

€
= 2y=x, = +n—n=—w, me(2yB—x, —r + 1~ 1)

1
—=2y=Ax, ~(r,+1)=—w, -me? '(ZYﬁ_Axn_(rz"'rl))

1
— 2y—(wl 2y+w, -2yﬁ)=—w2 -ma! -(Zyﬁ—(wl 2y+w, -2yﬁ))
1
—w, (2y+2yB)=-w, -m*"-2y-w,-(f-1)<0
This is, of course, a contradiction because 0 <w, -(2y+2yf). Thus, we have shown

there is no equilibrium in the 2x2 model outside of the degenerate one, by
identifying all candidate equilibria and then by showing that their component
necessary conditions could not simultaneously hold true. It remains to check that
the degenerate (non-trading) equilibrium proposed is in-fact an equilibrium.

We defined previously the degenerate equilibrium as the case of perceived

actuarially fair prices (q =w), rendering all agents’ reference points exactly equal in

cost to their endowments, and enabling them to hold a cash portfolio where they
receive exactly the reference point with certainty, experiencing neither gain nor loss
in any state. Two questions still remain: do markets clear, and do agents have an

incentive to deviate? Consider the market clearing condition, q-x=q-y. If agents

exactly afford their reference points, then demands must satisfy:

q.x,; tq4,%,; =q, '(W1y1j +W2y2j)+% '(lelj +W2y2j)
— 2 2
= Wl ylj + Wlwzyzj + Wlwzylj + w2y2j
= W1<W1 +W2)y1j +w, (Wl +W2)y2j

=4t



for all agents j, essentially by construction. Now consider the incentive to deviate.
Given the consumption plan of exactly achieving the reference point, agents achieve

a stable consumption of zero in all states by removing the gain-loss utility. Without

loss, consider a deviation for agent 1 to a new bundle {fcnl}, where state 1 is

demanded at a higher level (it becomes a gain) and state 2 becomes a loss. The

difference in the value function is given by:
V()=V(r)=V(&)=w (2, =r) = A-w, (5 -&,).
Given that the budget constraint still binds, we know that any increase in state 1

demand will need to be paid for by a decrease in state 2 demand, since we are in the

. . R N W, o n
world of perceived actuarially fair prices, so Ax,, = ——=Ax,,. Thus, for the new
W

bundle, we find that there is an incentive to deviate by increasing state 1
consumption, according to the following condition:
A A \a ﬂ, W2 A ‘
V(x) =W '(Axu) —A-w, | —Ax),

1
1

=(Afc”)a-wl‘”'(wl”"—/l-w,f”)>0 iff w, >w, - Al
The problem, of course, is that the choice of agent was arbitrary, meaning that both
agents have an incentive to deviate towards consuming more in the same state,
depending on the relative probabilities of states 1 and 2. Substituting in the budget
constraint means they can “afford” to do so, so the only way to restore equilibrium
would be to adjust prices. Unfortunately, we have already shown that no other
equilibrium prices exist. Thus, we have reduced to a truly degenerate equilibrium

condition: for any starting endowments, y, the reference dependent financial market



is in equilibrium if and only if the prices are perceived actuarially fair (q=w) and the

1
perceived probabilities are given by w, =w, - A1*¢.

If we recall the transformation from p, to w, above, the restriction on

1
suitable probabilities transforms to p” = p] - A'**, which is equivalent to:

1
& — ly»(Ha) ]
P>

To say the least, it seems highly unlikely that exogenous states of nature have any

predictable connection to the various parameters of the value function.

Discussion.
Thus far, we have established some apparent violations of expected utility in
observed options prices, and motivated a model of reference dependent preferences
by examining price discrepancies relative to actuarially fair. Unfortunately, once the
problem of properly assessing a stochastic reference point was addressed, we
showed that no financial exchange equilibrium can exist, outside of one where all
prices are perceived actuarially fair (according to the distorted probability
weighting of the agents) and where the physical probabilities coincide with the
parameters of the value function according to a specific functional relationship. This
all begs the question, what part of the approach is wrong?

Extending the theoretical results from prior research, the initial intuition was
that the purchaser of a put option or the seller of a call option will accept prices

systematically different than the actuarially fair prices, according to his risk



preferences. For example, a risk-neutral party will never buy above actuarially fair
prices, while a risk-averse party will buy puts or sell calls at an expected loss, and a
risk-loving investor will do the opposite. Thus, there is a strict relationship enforced
between the concavity/convexity of the utility function and the direction of the price
distortion away from actuarially fair. Extending these concepts to loss-averse
investors with reference dependent preferences, we are still convinced that agents
can be considered risk-averse or risk-loving in various regions about their reference
points, and accordingly, that their willingness to pay (or to accept) relative to
perceived actuarially fair prices is dictated similarly.

We chose the results of prospect theory for our model as a positive approach
- the predictions of willingness to pay or accept certain price distortions from fair
are in line with the observed distortions in actual financial markets. Thus it seems
the problem in our analysis may arise from relying on equilibrium concepts.
Specifically, while exchange-traded options markets are relatively complete and free
of arbitrage, we have no ex ante reason to believe that these markets exist in a stable
equilibrium - one in which agents complete trades and are satisfied. In particular,
the problem described above where agents reach a portfolio and then have an
incentive to deviate may likely occur in real time during market trading. Thus, an
obvious conclusion here is that ex-equilibrium analysis (where markets do not
necessarily clear all at once) may be most appropriate for evaluating the role of
reference dependent preferences in determining prices.

Rabin and Thaler (2001) give an oft-cited plumage argument: nice plumage

on a dead parrot does no-one any good. Traditional assumptions of concavity are



nice because they get us (among other things) equilibrium. However, if concavity is
the wrong approach, then a wrong equilibrium doesn’t help us to understand the
underlying truth. If correctly modeled behavior doesn’t generate equilibrium, then
maybe equilibrium isn’t worth much in terms of predicting financial market
outcomes.

Future research should consider two approaches to this problem, since
revealing preferences through market data will ultimately require a positive theory
which matches observed market outcomes, as well as better data to remove some of
the muddying factors in current financial markets data. Thus, we recommend an
approach of agent-based modeling to develop a comparative dynamics analysis to
agents responding to prices and other signals. Simultaneously, an experimental
approach is needed to capture financial markets data without transaction costs,
information asymmetries, market power, and the like.

On the experimental side, we outline the following approach to generating
clean financial data for the purposes of revealing risk preferences. An artificial
futures and options market would created around a random process as an
underlying asset, where the probability distribution of the random process is
announced in advance. All players compete with virtual trading dollars, subject to
constraints on maximum losses and forfeiture of prizes obtainable with virtual
dollars at the game’s conclusion. To parallel the goal of such markets operating in
place of crop insurance, players are initially randomly assigned ownership of ‘assets’
whose value follows the random process, and all other assets are options, which

must have a buyer and seller so they are in zero net supply. The game is thus



designed to be replicable as a real-money financial market for future research,
subject to overcoming the challenge of providing free ownership of assets to some

participants.
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