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Food Safety Regulation and Firm Productivity:

Evidence from the French Food Industry

Bontemps C.1, Nauges C.2,

Réquillart V.1 and Simioni M.1

(1) Toulouse School of Economics, Gremaq-INRA, Toulouse, France

(2) Toulouse School of Economics, Lerna-INRA, Toulouse, France

1 Introduction

A number of food scares following outbreaks of BSE (mad-cow disease), dioxin-contaminated chicken, listeria

and salmonella contamination have raised consumers' concern and induced a reinforcement of food safety

regulations. For instance, the United States (US) put into force in the 1990s new quality control regulations

that included the use of Hazard Analysis Critical Control Points (HACCP) methods as well as tests for

pathogens. In Europe, the European Commission published a white paper on food safety in 2000 and the

general food law entered into force two years later.1 This law introduced traceability (from farm to fork)

requirements as well as generalized risk assessment based on the principles of HACCP, and emphasized the

responsibility of food producers.2 To implement this new policy, norms dealing with quality management

and food safety were put in place.3 In addition, most �rms developed their own quality control systems. In

particular, food retailers have set private standards which frequently go beyond the requirements of public

standards (Henson and Humphrey, 2009).4 As shown by Antle (2000), safety regulations induced signi�cant

additional costs for the industry which in turn a�ected its productive e�ciency. In the meat industry,

according to Antle's study, these costs might be in the range of 1 to 10% of the �nal price depending on the

plant's size and initial level of safety.

1The European Community Regulation 178/2002 which lays down the general principles and requirements of the food law
came into force on 21 February 2002.

2The preamble to the European Union's General Food Law legislation states that: �A food business operator is best placed
to devise a safe system for supplying food and ensuring that the food it supplies is safe; thus, it should have primary legal
responsibility for ensuring food safety.� (CEC, 2002).

3The norm ISO 15161 extended the norm ISO 9000 to the food sector in 2001 and the norm ISO 22000 is now speci�cally
devoted to food safety issues.

4For example the BRC (British Retail Consortium) global standard was put in place in 1998, the IFS (International Food
Standard) standard in early 2000s and the EUREP-GAP standard on fresh products was developed in the late 1990s (Valceschini
and Saulais, 2005).
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The impact of various new regulations on productive e�ciency has been extensively discussed in the

literature on environmental regulation (for a recent overview of this literature, see Ambec et al., 2010).

From an empirical point of view, while most papers in the 1990s found that environmental regulation had

a negative impact on �rms' performance, some recent papers suggest that more stringent regulation is not

always detrimental to productivity (e.g., Lanoie et al., 2008). Changes in productivity are generally measured

as ratios of Total Factor Productivity (TFP) indices and these ratios are regressed on regulation indicators.

A further step should involve the decomposition of these ratios into di�erent interpretable components,

including measures of technical change and e�ciency change.

Technical change can be analyzed in terms of the movements of the production possibilities frontier. If

one agrees with the idea that �what was possible yesterday should be possible today�, then there is no reason

to expect the frontier to shift inward over time. However, if regulation becomes more stringent, an inward

shift of the frontier can no longer be excluded since �what was authorized yesterday is no longer authorized

today�. So the observed shift of the frontier may be the result of an upward shift due to technical progress

combined with an inward shift due to regulation. Depending on the relative size of these two e�ects one

can observe �apparent� technical regress (if the inward shift dominates) or �apparent� technical progress (if

the outward shift dominates). In the particular case of the French food industry, we argue that the sanitary

regulations imposed by the European Union (EU) in the early 2000s may have shrunk the set of �rms'

production possibilities and hence may have induced some �apparent� technical regress.

In a recent study, Bontemps et al. (2011) applied an index approach to aggregate data on the French

food processing industry and found that, on average, TFP decreased by 0.4% per year between 1996 and

2006, with the meat industry experiencing a larger rate of decrease (0.7%) than the dairy industry (0.1%).

In this paper, TFP is measured as the ratio of an output quantity index to an input quantity index where

the output quantity index is obtained by dividing the (observed) value of output by the corresponding price

index. According to price index theory, this index should be built in such a way that it takes into account

changes in output quality. However, as the French food industry faced more stringent safety regulations, the

consequent change in food quality is likely to be omitted when measuring the corresponding food price index.

Therefore, when costly regulations are put in place, one could detect a slow-down, or even a negative change,

in the rate of TFP if the change in food quality/safety were not properly accounted for in the corresponding

price index.

We provide further evidence on the dynamics of productivity in the food industry using �rm data. More

precisely, we analyze technical change over time using a two-stage procedure. In the �rst stage we identify

time spans (covering one or more years) when �apparent� technical regress or conversely �apparent� technical

progress occurred, and in the second stage we calculate an index of TFP change, the Färe-Primont index,

between the initial and �nal years of each period identi�ed in stage one (O'Donnell, 2011). To identify relevant
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periods, we develop an original iterative testing procedure based on the comparison of the distribution of

e�ciency scores of a set of observations, computed from two sets of sequential production possibilities. The

�rst set is called the Forward Increasing Production Set (or FIPS). For a given year, it is constructed from

the observations from the �rst year up until that year. This set is used to detect periods of �apparent�

technical progress. The second set is named the Backward Increasing Production Set (or BIPS). For a given

year, it is constructed from the observations in the latest year of observation back to the given year. This set

is used to detect periods of �apparent� technical regress. Once periods in which the technical change occurred

in the same direction have been identi�ed, we calculate the contribution of technical change and e�ciency

change in TFP by decomposing the Färe-Primont index. We apply this methodology to the analysis of the

poultry sector. In contrast with most of the previous literature our empirical analysis uses non-parametric

approaches on a panel data of �rms. Our results suggest that �apparent� technical progress occurred during

the �rst years of the 1996-2006 period, whereas some �apparent� technical regress is observed in the more

recent years at the time when safety regulation was being reinforced in the EU.

Section 2 reviews the related literature. In section 3 we discuss some issues in productivity measurement

with panel data. In section 4 we present our methodology, including a simulation exercise describing the basic

intuitions. The application using panel data from France is developed in section 5 and section 6 concludes.

2 Related literature

Most studies on the food industry have measured productivity by applying parametric approaches to aggre-

gate data. Buccola et al. (2000) estimated a Generalized Leontief cost function to calculate size economies,

productivity growth and technical change in the US milling and baking industries from 1958 to 1994. The

same approach was used by Morrison and Diewert (1990) on data from the US food and kindred products

industry (from 1965 to 1991). Gopinath (2003) estimated a simple parametric model in which value-added

per worker was speci�ed as a function of capital per worker, total employment, and a time trend. This

model was estimated using country-level data from the food processing industry for 13 OECD (Organisation

for Economic Co-operation and Development) countries from 1975 to 1995. According to his results, TFP

in France was 55% that of the US TFP over the period (the US was the leading country in the sample in

terms of TFP). Moreover, the TFP growth rate in France was 0.4% per year. Fischer and Schornberg (2007)

used an index approach on data from 13 European countries. They calculated an industrial competitiveness

index; a composite measure of pro�tability, productivity, and output growth. Their results suggest that

overall competitiveness was slightly higher in the 1999-2002 period compared to the 1995-1998 period. As

far as we know, Chaaban et al. (2005) is the only published article using �rm data from the French food

processing industry. Using Data Envelopment Analysis (DEA), the authors found that the average technical
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e�ciency of cheese manufacturers (from 1985 to 2000) varied from 0.71 to 0.82 (a technical e�ciency score

of 1 indicates that a �rm is fully e�cient) depending on the assumption made about the technology (that

is, either constant or variable returns to scale).

The impact of regulations on costs and productivity has seldom been studied. Antle (2000) showed that

US sanitary regulations (HACCP and tests for pathogen) increased production costs in the meat industry.

Among other reasons, costs increased because of the necessary process modi�cations induced by the HACCP

plan, additional requirements on the slaughter lines, and loss in operating e�ciency. Goodwin and Shiptsova

(2000) estimated that the cost of implementing HACCP control in the US broiler industry amounted to about

0.7% of the industry's total sales. In France, Magdelaine and Chesnel (2005) analyzed the cost induced by

regulatory constraints in the poultry industry since the 1990s, including the ban of meat and bone �our in

2000, the progressive ban of some antibiotics, the requirement of full traceability along the chain (in 2002,

with full implementation in 2005), and the regulation aimed at decreasing the risk of salmonella and other

food-borne diseases. Their �ndings indicate that the cost of these sanitary regulations represents about 6%

of the value of chicken meat, with 40% of the costs occurring at the processing level. However, as pointed

out by Antle (2000) it is likely that the accounting costs are only a part of the overall costs of adaptation.

3 Issues in productivity measurement

In order to measure productivity change and the subsequent contribution of e�ciency and technical change

using panel data, we proceed in two stages. In the �rst stage, we propose an original methodology to identify

time spans without any assumption on their length when the production possibilities frontier has shifted.

This methodology allows us to detect both inward and outward movements of the frontier and does not

require a balanced panel. In the second stage, we measure the change in TFP in the periods identi�ed in

stage one, and decompose it into interpretable components. Before describing the methodology, we discuss

some related issues in productivity measurement.

3.1 The unobservability of output quality

There is evidence that sanitary regulations have increased production costs in the meat and poultry industry

(Antle, 2000; Goodwin and Shiptsova, 2000; Magdelaine and Chesnel, 2005). It is quite straightforward to

understand that, if the change in product safety or quality is not taken into account in the measurement of

the quantity of output that is produced by a �rm, then the �rm might be described as being less productive

after the sanitary regulations have been put into force.

To illustrate this issue, consider a technically-e�cient �rm producing a product Y whose level of safety

K can vary. Figure 1 illustrates the production frontier in the {Y,K} space for a given amount of input (X).
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We assume that this e�cient �rm is producing {Y1,K1} at time t1 and {Y2,K2} at time t2 with {Y1 > Y2}

and {K1 < K2} using the same level of input X. We assume that there is no technical change between t1

and t2. However, the level of safety has increased from K1 to K2. The apparent productivity of the �rm

at time t1, i.e. Y1/X, is larger than its apparent productivity at time t2, i.e. Y2/X. Generalizing this to

the whole space of observations, that is for di�erent levels of input, one would conclude erroneously that

the production possibilities frontier had shifted inward between t1 and t2. Hence, if the calculation of the

quantity of output produced by the �rm does not account properly for the change in output quality, then

producing a safer product could be mistakenly interpreted as an inward shift in the production frontier.

Figure 1: Quantity-quality frontier

Sanitary regulations may also lead food processing �rms to buy more quality-certi�ed raw products,

which are more costly than non-certi�ed products. If the price index that is used to recover the quantity of

raw product used in the production process does not account for a change in quality, then the input price

index will underestimate the true price of the raw product and the derived input quantity index will be

overestimated. If the same applies to most �rms in an industry, then the calculation of TFP may again

indicate some �apparent� technical regress. Since sanitary regulations were implemented in the French food

sector in the early 2000s, �apparent� technical regress could show in our data if the corresponding price

indexes do not properly account for any change in safety. It is thus important that the approach used to

measure TFP allows for both outward and inward shifts of the production possibilities frontier.
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3.2 Technical change versus e�ciency change

The usual approach to identifying the contribution of technical change and e�ciency change in the evolution

of TFP between two periods is to compute and decompose an index of TFP change. For example, Simar

and Wilson (1998) decompose the Malmquist index into a (pure) e�ciency e�ect, a (pure) technical e�ect

and scale e�ects. The e�ciency e�ect measures the change in technical e�ciency between periods t1 and t2,

the technical e�ect captures the shift in technology, and the scale e�ects take into account possible changes

in the shape of the technology. However, as pointed out by O'Donnell (2008), when the technology does

not exhibit constant returns to scale (CRS), the Malmquist index is not �multiplicatively complete� meaning

that it may be an unreliable measure of TFP change.

More recently, O'Donnell (2010) proposed a method of decomposing the change in TFP into three multi-

plicative terms: technical change; the change in �rm e�ciency; and a residual term which encompasses both

change in scale and mix e�ciency. However, in the proposed decomposition, technical change is de�ned as

the ratio of the maximum TFP that can be achieved at each time period, and hence is common to all �rms.

In our case, we would like to have a more local measure of technical change, i.e., to be able to measure

technical change for given levels of inputs.

Following O'Donnell (2010), let Yn,t and Xn,t denote the observed output and inputs of �rm n at time t,

respectively. Y
s

n,t denotes the maximum output feasible at time s, that is with the technology available at

time s when using Xn,t. We thus write:

Yn,t2/Xn,t2

Yn,t1/Xn,t1

=

Yn,t2

Y
t2
n,t2

Yn,t1

Y
t1
n,t1

×


Yn,t2

Y
t1
n,t2

Yn,t2

Y
t2
n,t2

×

Yn,t1

Y
t1
n,t1

Yn,t1

Y
t2
n,t1


0.5

×

 Y
t2
n,t2

Xn,t2

Y
t2
n,t1

Xn,t1

×
Y

t1
n,t2

Xn,t2

Y t1
n,t1

Xn,t1


0.5

(1)

The left-hand-side (LHS) of equation (1) is the change in TFP. The right-hand-side (RHS) is composed

of three terms: the change in (pure) e�ciency; the (�rm speci�c) technical change; and a residual term

integrating mix and scale e�ciency. The �rst term of the RHS is the ratio of the technical e�ciencies of

�rm n measured at period t2 and at period t1. The second term is the geometric mean of technical changes

measured between period t1 and t2 when using Xn,t1 and Xn,t2 as inputs, respectively. Thus Yn,t2/Y
t1
n,t2

is the e�ciency of �rm n evaluated at the level of input Xn,t2 with respect to the technology available at

period t1. Similarly Yn,t2/Y
t2
n,t2 is the e�ciency of �rm n evaluated at the level of input Xn,t2 with respect

to the technology available at period t2.

In �gure 2, A and B are observations of the performance of a �rm at periods t1 and t2 respectively. The

ratio B0B/B0B2 is the e�ciency of the �rm at period t2. Similarly, the ratio A0A/A0A1 is the e�ciency of

the �rm at period t1. The ratio of these two is the change in pure e�ciency. At a given level of input, technical

change is measured by the increase in output between period t1 and t2. It is measured by A0A2/A0A1 for
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Figure 2: Decomposition of the TFP index

the �rm at period t1 and B0B2/B0B1 for the �rm at period t2. The geometrical mean of these two terms is

the measure of �rm-speci�c technical change. We implement this approach using the Färe-Primont index as

the index of TFP change.5

3.3 Choice of production sets

The measurement of e�ciency depends on the choice of the production set or reference technology. For

example, one could consider contemporaneous production sets, i.e., production sets that are constructed at

each point in time from the observations at that time only. In this case, production sets at di�erent points

in time are assumed to be completely unrelated. They can expand or contract from one year to another

and �apparent� technical progress as well as �apparent� technical regress can occur whatever the base time

period is. If one considers sequential production sets instead, i.e., production sets which, at each point in

time, are constructed from the observations made from the base period up until the contemporaneous period,

5We use DPIN and R to calculate the �rst and second terms of the decomposition. DPIN Version 3.0 is software for
Decomposing Productivity Index Numbers into measures of technical change and various measures of e�ciency change. It is
available at the following address: http://www.uq.edu.au/economics/cepa/dpin.htm
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the production possibilities frontier will expand as we move from period t to period t + 1. The underlying

assumption on the technology is that there is technical progress over time, i.e. �what was possible in the past

always remains possible in the future� (for related discussions, see Tulkens and Van den Eeckaut, 1995). In

the following, we develop an iterative procedure for detecting both inward and outward shifts of the frontier

using sequential production sets.

4 Methodology

The sequential production sets used to implement our iterative procedure are de�ned as follows:

1. The Forward Increasing Production Set (FIPS):6

PFIPSt =

(x, y) | y ≤
t∑

τ=1

∑
i∈S(τ)

ziτYiτ , x ≥
t∑

τ=1

∑
i∈S(τ)

ziτXiτ , all ziτ ≥ 0

 ,

where S(τ) is the set of �rms operating at time τ and ziτ is a constant. The FIPS in year t is constructed

from the observations from the �rst year (τ = 1) up until year t.

2. The Backward Increasing Production Set (BIPS):

PBIPSt =

(x, y) | y ≤
T∑
τ=t

∑
i∈S(τ)

ziτYiτ , x ≥
T∑
τ=t

∑
i∈S(τ)

ziτXiτ , all ziτ ≥ 0

 .

The BIPS in year t is constructed from the observations from the latest year of observation (T ) back

to year t.

These sequential production sets have the following useful properties:

• If an outward shift of the frontier, i.e. �apparent� technical progress, occurs between t and t+ 1, then

PFIPSt ⊂ PFIPSt+1 and PBIPSt ≡ PBIPSt+1 .

• If an inward shift of the frontier, i.e. �apparent� technical regress, occurs between t and t + 1, then

PFIPSt ≡ PFIPSt+1 and PBIPSt+1 ⊂ PBIPSt .

We use these properties to detect �apparent� technical changes over time. We implement the following

methodology. First, using the DEA technique, we estimate T frontiers based on sequential FIPS (from

6In the following, we omit the constraints describing the nature of returns to scale for ease of presentation.
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PFIPS1 to PFIPST ) and T frontiers based on sequential BIPS (from PBIPST to PBIPS1 ). Then, we calculate

the e�ciency scores for a set of observations that are randomly chosen from the whole population of �rms.7

The test of no technical change versus �apparent� technical progress between periods t1 and t2 (t1 < t2)

corresponds to the test of equality of the distributions of e�ciency scores computed using the FIPS in t1

and the FIPS in t2. Similarly, the test of no technical change versus (�apparent�) technical regress between

periods t1 and t2 is based on the test of equality of the distributions of e�ciency scores computed using

the BIPS in t1 and the BIPS in t2. If the equality between the two distributions is rejected, then there is

evidence of technical change. In the empirical application, we implement the test developed by Li (1996) and

studied by Fan and Ullah (1999) to test the null hypothesis of the equality of two distributions of e�ciency

scores computed using FIPS and BIPS.

The intuition underlying the methodology is illustrated below using simulated data. We simulate single-

input single-output technologies since they allow us to visualize the plot of the true technology as well as the

spread of the observed realizations of input and output combinations for each �rm, along with the estimated

FIPS and BIPS. Two cases are considered:

Case 1

We start by generating a dataset of N = 100 single-input single-output �rms over three years. We assume

the following process:

yt = x0.5t × exp{−0.25× (t− 1)}/ (1 + ut) (2)

with xt ∼ U [0, 1] and ut ∼ N+(0.2, 0.25). This procedure generates input-output pairs for year 1, year 2,

and year 3, and incorporates an assumption of �apparent� technical regress through the term (exp{−0.25×

(t − 1)}). In line with the above discussion, this example could illustrate a situation where no technical

change has occurred but product safety has improved over time due to changes in the production process

or the purchase of more costly inputs. Each year, the FIPS and BIPS frontiers are obtained using DEA

as shown in �gure 3. In �gure 3(a) (PFIPS1 ) the frontier is calculated from the observations of year 1; in

�gure 3(b) (PFIPS2 ) the frontier is calculated from the observations of year 1 and year 2; in �gure 3(c)

(PFIPS3 ) the frontier is calculated from the observations of year 1, year 2 and year 3. Given the assumption

of technical regress, the FIPS frontier does not move over time. Conversely, in �gure 3(d)(PBIPS3 ) the

frontier is calculated from the observations of year 3; in �gure 3(e) (PBIPS2 ) the frontier is calculated from

the observations of year 3 and year 2; in �gure 3(f)(PBIPS1 ) the frontier is calculated from the observations

of year 3, year 2 and year 1. Given the assumption of technical regress, the BIPS frontier does move over

time.

7Because we calculate e�ciency scores of a sample of observations drawn from the whole sample which is composed with
the observations of every �rm at every date, e�ciency scores are not bounded by 1.
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Figure 3: DEA estimates of frontiers using FIPS and BIPS (case 1)
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The basis of our testing procedure is the comparison of the distribution of e�ciency scores (�gure 4)

when (1) the e�ciency scores of a set of observations are computed on the basis of FIPS frontiers (�gure

4(a)) and (2) e�ciency scores of the same set of observations are computed on the basis of BIPS frontiers

(�gure 4(b)). The time pattern of the distributions of e�ciency scores is very di�erent in the two cases.

When considering frontiers based on sequential FIPS, the distribution of e�ciency scores remains constant

over time which indicates that there was no �apparent� technical progress between year 1 and year 3. On

the contrary, the graph showing distributions of e�ciency scores computed from BIPS provides evidence for

(apparent) technical regress between year 1 and year 3. A similar simulation exercise with technical progress

would lead to a reverse pattern of distributions of e�ciency scores for both BIPS and FIPS.

Case 2

In practice, technical change (as well as the unobserved change in quality) is likely not to be homogeneous

across all �rms, even in a speci�c sector. This might be the result of either an improvement in the conversion

10



Figure 4: Distribution of e�ciency scores (case 1)
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rate of raw material to �nal product which shifts the frontier outward or an increase in �xed costs (e.g.,

investment) to deal with additional safety which (apparently) shifts the frontier inward. For large �rms the

former e�ect would dominate while the reverse would be observed for small �rms. We thus consider a second

single-input single-output example in which the true technology at time t is assumed to be de�ned as follows:

yt = xαt
t / (1 + ut) , t = 1, 2, 3 (3)

where α1 = 0.2, α2 = 0.6, and α3 = 1. Input quantities and true technical e�ciency scores are simulated

in the same way as in the �rst case but, as shown in �gure 5, the chosen technology exhibits �apparent�

technical progress for large �rms and (�apparent�) technical regress for small �rms.

The distributions of e�ciency scores calculated using sequential FIPS and BIPS are shown in �gure 6.

When based on sequential FIPS, the distribution of e�ciency scores changes over time which is evidence

of an outward shift of the frontier (or �apparent� technical progress) occurring between year 1 and year 3

(�gure 6(a)). Similarly, the graph showing distributions of e�ciency scores computed from BIPS provides

evidence of an inward shift of the frontier or �apparent� technical regress between year 1 and year 3 (�gure

6(b)). Our testing procedure thus allows us to detect both �apparent� technical progress and �apparent�

technical regress occurring over the same period.

To summarize, �apparent� technical progress is detected through a change in the distribution of e�ciency

11



Figure 5: True frontiers (case 2)
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scores using FIPS while �apparent� technical regress is detected through a change in the distribution of

e�ciency scores using BIPS.

5 Application to the French Poultry Industry

We use data from a national accounting survey (Enquête Annuelle d'Entreprise, source: INSEE, French

Statistical Institute) which gathers information at the �rm level for food processing industries. For each

�rm and each year from 1996 to 2006 we have information on the following variables: production in value

(Y ); stock of capital (K); labor (L) both in volume and value; and raw materials expenditure (M) in value.

Values have been converted into quantity indices using appropriate price indices obtained from the French

Statistical Institute (INSEE).

We focus on the poultry sector which accounts for 5% of the total production in the food industry.

First, we use DEA to estimate production frontiers based on FIPS and BIPS from 1996 to 2006 and the

corresponding e�ciency scores for a randomly-drawn sample of 200 observations.8 Throughout we assume

that all �rms operate under the same technology. We thus obtain 11 distributions of e�ciency scores under

FIPS and 11 under BIPS. We then test the null hypothesis of no technical change between all (consecutive

and non-consecutive) time periods by testing the equality of the distribution of e�ciency scores using a

8The same conclusions are reached when using a larger number of observations to estimate the production frontiers.
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Figure 6: Distribution of e�ciency scores (case 2)
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bootstrapped version of the Li (1996) test of equality of densities.9 Once periods in which technical change

occurred have been identi�ed, we calculate the contribution of technical change and e�ciency change in TFP

by decomposing the Färe-Primont index.

In 2006, our sample contains 151 �rms of varying size.10 The partial productivity of raw materials (Y/M)

is relatively homogenous as this ratio is in the range [1.19 - 1.37] for 50% of the �rms. This might be due to

the fact that the conversion rate of raw material to the �nal product is strongly constrained by the technology.

In contrast, the partial productivity of labor (Y/L) and capital (Y/K) is much more variable since labor

and capital might be more substitutable and can therefore be used in di�erent proportions (table 1). Even

if constrained by technology, �rms can use di�erent combinations of inputs to produce a given quantity of

output. For this reason, e�ciency scores calculated with respect to a production frontier provide a more

general measure of �rms' performance than simple partial productivity ratios. The average (output-oriented)

e�ciency score in 2006 is 0.93 and half the �rms have an e�ciency score in the range 0.89-0.98, indicating

9DEA and the Li-test have been implemented using R-packages Benchmarking (Bogetoft and Otto, 2010; Hay�eld and
Racine, 2008), respectively.

10The original sample was composed of 1,960 observations from 282 distinct �rms. As DEA is known to be sensitive to
outliers, we apply a procedure to detect outliers every year independently. We identify outliers on the basis of �rms' average
productivity Y/X where X is an aggregate quantity index of inputs. Outliers are �rms with an average productivity larger
than the productivity of the third quartile (p75) plus 1.5 times the di�erence between third and �rst quartile (p75−p25). More
formal outlier detection techniques, such as the one proposed by Wilson (1993), would have induced the exclusion of almost
all large �rms. The input quantity index was built using price indices obtained from the French Statistical Institute (INSEE).
Using this procedure induced the removal of 118 observations (from 49 di�erent �rms).
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that performance is relatively homogenous even if some �rms have a very high level of partial productivity

of labor or capital.11

Table 1: Poultry industry

1996, (N=180) 2006, (N=151)
Variable Mean Std dev Max Mean Std dev Max
Y 26,153 57,616 405,249 33,854 66,402 486,890
Y/K 6.63 6.56 53.95 8.27 31.28 342.03
Y/L 334.39 1,673.36 19,524.89 239.82 436.42 4,585.55
Y/M 1.41 0.34 3.14 1.38 0.37 2.90

The distributions of e�ciency scores calculated using sequential FIPS and BIPS indicate that the poultry

industry experienced a period of �apparent� technical progress from 1996 to 2000, followed by a period of

�apparent� technical regress from 2000 to 2006 (�gure 7). These �ndings are con�rmed by the formal tests

of equality of distributions (see table 5 in appendix).12

Figure 7: Distributions of e�ciency scores in the poultry industry
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(b) E�ciency scores based on BIPS frontiers
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To better understand what occurred during these two periods, we compute the Färe-Primont TFP index

over 1996-2000 and 2000-2006 as well as over the whole period for comparison. The Färe-Primont TFP index

11E�ciency scores were calculated using the contemporaneous frontier. Note that we get similar results for the initial year
(1996). E�ciency scores are not shown here but are available upon request.

12The formal tests show, on the one hand, that FIPS-based frontiers signi�cantly moved from one year to another between
1996 and 2000 (except between 1998 and 1999). On the other hand BIPS-based frontiers did not change signi�cantly over the
period.
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is decomposed into three terms: the change in technology (dTech); the change in e�ciency (dOTE); and a

residual term (dRES) that takes into account changes in scale and input mix. Note that, by de�nition, the

Färe-Primont index can only be computed using a balanced panel, hence using �rms which are present both

at the beginning and at the end of the period.13

Results indicate that productivity increased slightly over the 1996-2000 period, while it decreased over

2000-2006 (table 2). There is evidence of technical progress (dTech = 1.16) from 1996 to 2000, followed by

technical regress (dTech = 0.87) between 2000 and 2006. These results are in line with the �ndings from the

FIPS and BIPS analysis.

The decomposition of the Färe-Primont index shows a negative change in pure e�ciency (dOTE lower

than one) between 1996 and 2000, which may indicate that �rms did not manage, on average, to catch up

with the improved technology. Between 2000 and 2006, the (pure) technical e�ciency of the observed �rms

remained almost constant (dOTE = 0.99). The TFP index calculated over the entire period (1996 to 2006)

shows a decrease in TFP, mainly explained by an inward shift of the technological frontier.

Table 2: Decomposition of the Färe-Primont index of TFP

Year 1 Year 2 No. observations TFP dTech dOTE dRES
1996 2000 137 1.04 1.16 0.94 0.97
2000 2006 119 0.95 0.87 0.99 1.12
1996 2006 106 0.95 0.97 1.00 0.99

Table 3 provides greater details on the distribution of technological change across the population of �rms:

between 1996 and 2000 all �rms in our sample experienced technical progress while almost all �rms (98%)

experienced �apparent� technical regress between 2000 and 2006. When looking at the whole period (1996

to 2006), most �rms (82%) experienced �apparent� technical regress meaning that the inward shift that

occurred between 2000 and 2006 was more pronounced than the outward shift that occurred between 1996

and 2000.

Table 3: Distribution of the technological change per �rm

Year 1 Year 2 Min First Quartile Median Third Quartile Max
1996 2000 1.02 1.18 1.27 1.32 1.49
2000 2006 0.65 0.74 0.79 0.87 1.23
1996 2006 0.88 0.94 0.97 0.99 1.23

These results are consistent with the reinforcement of the EU food safety regulation in the poultry

industry. As reported by Magdelaine and Chesnel (2005), food safety regulations were gradually put in place

13The Färe-Primont index was calculated using 137 �rms for the period 1996-2000, 119 �rms for the period 2000-2006, and
110 �rms for the period 1996-2006. Because the sets of �rms used for calculating the TFP index for the di�erent periods are
not identical, the Färe-Primont index for 1996-2006 is not equal to the product of the two indices calculated over 1996-2000
and 2000-2006.
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and came into force in the early 2000s (table 4). These policy measures had an impact on the whole chain.

Some of them, such as the ban on antibiotics, had a direct impact on the cost of production of chicken, while

others, such as the need to develop traceability of the whole production process, a�ected di�erent levels

of the production chain. All in all, the ban of the use of meat and bone �our for animal feeding had the

largest impact at the processing stage (Magdelaine and Chesnel, 2005): before 2001, processors were selling

slaughtering co-products to producers. This was no longer possible after the ban and processors now have

to pay for the removal of these co-products. Our results thus suggest that, even if there were some technical

progress over time in the poultry industry, the upward shift of the frontier was more than annihilated by the

impact of additional requirements which led to an (apparent) inward shift of the frontier from 2000 to 2006.

Table 4: Main changes in the safety regulation from 1996 to 2006 (poultry industry)

Policy Decision Date Reference

Ban of the use of meat and bone �our Nov 2000 Ordinance on animal feed 14 Nov 2000
for animal feed

Progressive ban of antibiotics Dec 1998 Council regulation (EC) No 2821/98

General principles and requirements of food law Jan 2002 Regulation (EC) No 178/2002
and procedures in matters of food safety

Measures for protection against zoonoses 1992 - 2003 Directive 92/117/EEC
to prevent outbreaks of food borne infections Regulation CE 2160/2003

Directive 2003/99/CE

6 Conclusion

This paper contributes to the literature on food safety regulation and its impact on �rms' productivity. We

argue that food safety regulation may induce �apparent� technical regress by constraining �what is possible to

produce today� compared to �what was possible yesterday�. If food quality and/or safety are not observable,

then not taking food safety regulation into account could lead to the counterintuitive conclusion of technical

regress. In this paper, we develop a methodology to analyze the dynamics of productivity when food safety

regulation is implemented but food quality is not observed.

Our methodology lies in a two-stage data-driven procedure. In the �rst stage, we compare the distribu-

tions of e�ciency scores of a sample of randomly-drawn observations calculated using Forward Increasing

Production Sets (FIPS) and Backward Increasing Production Sets (BIPS). A formal testing procedure allows

us to identify periods of �apparent� technical progress and �apparent� technical regress. In the second stage,

Färe-Primont TFP indices are computed over the identi�ed sub-periods and are decomposed into technical

change and e�ciency change.
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Using panel data of �rms from the French poultry industry, we show that this industry experienced a

period of technical progress from 1996 to 2000 followed by a period of �apparent� technical regress from 2000

to 2006. We argue that this �apparent� technical regress might be a consequence of the higher constraints

exerted on the industry such as those imposed by the more stringent sanitary regulations. Our results could

thus con�rm that the sanitary regulations which came into force in the 2000s induced additional costs for

this industry.

One caveat of our analysis is the use of DEA to estimate production frontiers and e�ciency scores. More

robust techniques such as m-frontiers or alpha-frontiers might be worth considering for future research. To

investigate further the contribution of technical change, it could be useful to gather data on polluting outputs

at the level of the �rm in order to take these directly into account when estimating �rms' e�ciency scores (e.g.

Cuesta et al., 2009, in the US electricity generating sector). With respect to sanitary regulations, it seems

much more challenging to gather data at the �rm level to control for the sanitary/quality characteristics of

the products. Finally, a possible extension of our work would be the analysis of the e�ciency of �rms that

enter and exit the industry. Our analysis of technical change takes into account all �rms whatever their age.

However when quantifying and decomposing TFP change, we use a balanced panel and thus exclude �rms

which entered or exited during the period.
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Appendix: Equality tests and distributions of e�ciency scores

Table 5: Nonparametric test for equality of distributions, Li (1996)

(The upper diagonal reports the P-values associated with the test of H0 : {ScoreY eari(row) = ScoreY earj(col)})

Using FIPS frontiers
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1996 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1997 . . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1998 . . . 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1999 . . . . 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2000 . . . . . 1.00 1.00 1.00 1.00 1.00 1.00
2001 . . . . . . 1.00 1.00 1.00 1.00 1.00
2002 . . . . . . . 1.00 1.00 1.00 1.00
2003 . . . . . . . . 1.00 1.00 1.00
2004 . . . . . . . . . 1.00 1.00
2005 . . . . . . . . . . 1.00

Using BIPS frontiers

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
1996 . 1.00 1.00 1.00 0.68 0.00 0.00 0.00 0.00 0.00 0.00
1997 . . 1.00 1.00 0.68 0.00 0.00 0.00 0.00 0.00 0.00
1998 . . . 1.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00
1999 . . . . 0.96 0.00 0.00 0.00 0.00 0.00 0.00
2000 . . . . . 0.00 0.00 0.00 0.00 0.00 0.00
2001 . . . . . . 0.13 0.02 0.00 0.00 0.00
2002 . . . . . . . 0.80 0.06 0.03 0.66
2003 . . . . . . . . 0.06 0.04 0.95
2004 . . . . . . . . . 0.96 0.92
2005 . . . . . . . . . . 0.90
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