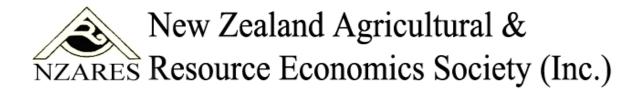


The World's Largest Open Access Agricultural & Applied Economics Digital Library


This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

To Keep it 'Zip'ped or Not? Challenges for a Scientist Working as a Member of a Canterbury Water Zone Committee

Ken HugheyLincoln University

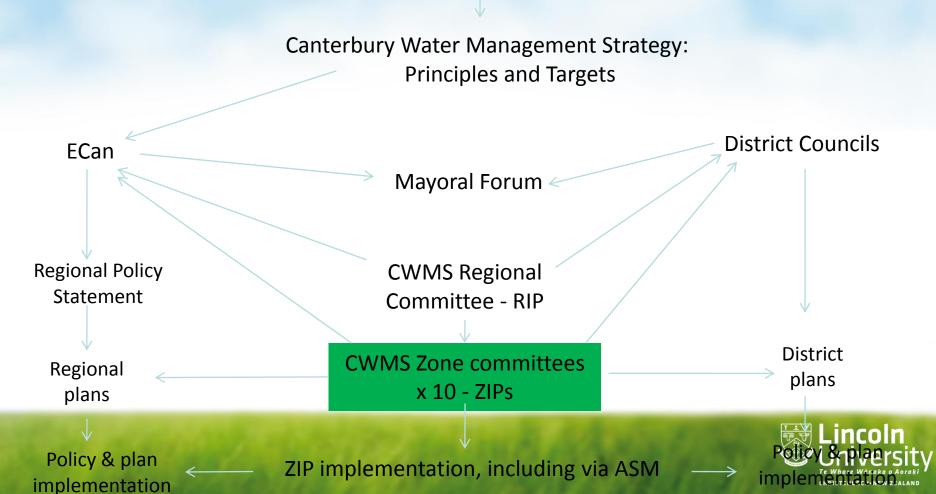
Paper presented at the 2011 NZARES Conference

Tahuna Conference Centre - Nelson, New Zealand. August 25-26, 2011

Copyright by author(s). Readers may make copies of this document for non-commercial purposes only, provided that this copyright notice appears on all such copies

To keep it 'zip'ped or not? – challenges for a scientist working as a member of a Canterbury water zone committee

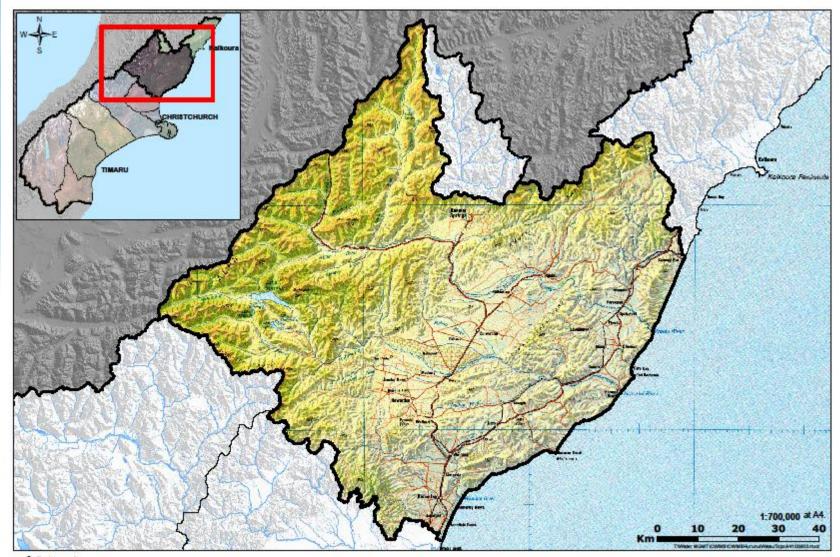
Ken Hughey
Lincoln University
Paper to NZARES, Nelson, 25-26 August 2011


Outline

- Where I fit in the 'jig-saw puzzle' that is Canterbury Water
- The appointment process or 'how to make friends and influence people' Democracy or ...?
- Local vs vocal an issue of 'fit for purpose'
- Decision making informed (or not, by science) some of the big questions
- Guiding principles for a scientist in contributing, collaboratively, to integrated planning
- Strategies for improving science relevance, and use
- Some conclusions and other insights

Where I fit in the 'jig-saw puzzle' that is Canterbury Water

Environment Canterbury (Temporary Commissioners) Act 2010



The appointment process – or 'how to make friends and influence people' Democracy or ...?

- Environment Canterbury and Hurunui DC called for 'self'-nominations for the community appointee positions on the ZC – early 2010
- After being approached by an ENGO I applied, was not short-listed, then advised I was not selected
- I was overseas for a couple of weeks and upon my return was asked if 'I would like my application reconsidered' interesting
- I then gave a presentation of my vision for the Hurunui-Waiau zone to a selection panel and was then 'observed' participating in a collaborative process
- Finally, I was contacted with the great news that I had been selected. Indeed the Christchurch Press gave me the sort of headline I had always sought (but never received as a rugby player) The Press, 30 June 2010:

"Hughey gets water job after selection backflip"

Bertalian Hurunui - Waiau Canterbury Water Management Strategy Zone

Local vs vocal – an issue of 'fit for purpose'

- One issue two of us (seen, at least initially, as the 'greenie' appointees)
 have faced 'continually' is that we live way outside of the zone. When
 meetings for over a year are every 3 weeks, roughly 3-9pm plus at least an
 hour of travel each way, then it's a big commitment for 'out-of-zoners'.
- We frequently get the 'local problem, local solution' argument. Our argument – there are matters of local, regional and national interest in the zone and we need to take account of all levels.
- And, how vocal (as a non-local) should we be with our input? I would have to say I have varied my input, and had to in order to survive, and in order to have greatest effect. Sometimes, I have been openly angry especially when it comes to matters of policy and science ...

Decision making informed (or not, by science) – some of the big questions

- Land use and water quality is there a connection and can it be defined?
- Environmental flows can they be defined?
- Ecological effects of dams and changed flows do we know these with confidence?
- Are there cost-effective options for non-point source pollution management?

Guiding 'principles' for a scientist in contributing, collaboratively, to integrated planning

- I decided to use some guiding 'principles' for informing my inputs into the ZIP preparation process – based on Hughey and Hickling (2006) – and to 'fight' until I felt each was properly considered.
- These guiding 'principles' are built around:
 - Ecological principles
 - Objectives and outcomes
 - Adaptive management
 - Quality of science information used

Operationalising the 'principles'

Ecological principles		Objectives and		Adaptive management		Quality of science information used					
		outcomes									
Explicit	Environmental	Objectives	Outcomes	There is a	The policy is	The best	Where there is	Best available			
references	impacts	are	are assessed	commitment to	flexible enough	available	inadequate information	range of			
to ecological	attributable to	prioritised	in terms of	ongoing	to allow for	information is	to address key	ecological			
processes	water resource	based on	measured	monitoring,	periodic reviews	used in	information	scientists			
and	development	the likely	ecological	using proven	of science and	designing	requirements for	assisted			
principles	and/or land use	ecological	responses	methods	management,	policy and	planning and	throughout			
	intensification	benefits			with the results	implementing	implementing	policy/			
	are clearly	that will			incorporated	management –	management, the	planning			
	established	accrue from			into revised	where possible	relevant agencies	process			
	within an	the planned			management	this is	should commit	ĺ			
	ecological	management				scientifically	themselves to	ĺ			
	context					based and peer	appropriate research	ĺ			
			,			reviewed	investment	ĺ			
								1			
			ļ	•							

Each of these can be scored on a 1-5 performance criteria scale with 1=very poor and 5=very good

Example application to '3' key sections of the ZIP

	Ecological principles		Objectives and outcomes		Adaptive management		Quality of science information used			
	Explicit	Environmental	Objectives are	Outcomes are	There is a	The policy is	The best available	Where there is	Best available	
	references to	impacts	prioritised based	assessed in	commitment	flexible enough	information is	inadequate	range of	
	ecological	attributable to	on the likely	terms of	to ongoing	to allow for	used in designing	information to address	ecological	
	processes and	water resource	ecological	measured	monitoring,	periodic reviews	policy and	key information	scientists	
	principles	development	benefits that will	ecological	using proven	of science and	implementing	requirements for	assisted	
		and/or land use	accrue from the	responses	methods	management,	management –	planning and	throughout	
		intensification	planned			with the results	where possible	implementing	policy/	
		are clearly	management			incorporated	this is	management, the	planning	
		established				into revised	scientifically	relevant agencies	process	
		within an				management	based and peer	should commit		
		ecological					reviewed	themselves to		Score
Component		context						appropriate research		(/45)
of the ZIP								investment		` ′
3. Ecosystem	Key principles	Generally yes,	Yes, and	Very clear set of	Yes – seeks to	Yes – links to	Yes, although	Calls for collection of	Generally yes	41/45
health/	around river flow	especially in	generally	desired	establish	Regional Plan	some information	more, relevant, and	 made use of 	
biodiversity	needs identified,	relation to the	(although not	outcomes	baseline	with built in	clearly inadequate	useable information	NIWA and	
and braided	e.g., variability;	impacts of dams	always, e.g.,	defined –	conditions,	review			ECan	
river	other ecosystem	and raising of	restoration	provide sound	but silent on	processes			scientists, and	
character	management	lakes	priorities) against	basis for future	methods				others as	
	principles also		clear criteria	management					necessary.	
	given	G 4/5	g 0/5	G 5/5	G 4/5	G 5/5	g 5/5	G 5/5	0 5/5	
. 17	Score: 4/5	Score: 4/5	Score: 3/5	Score: 5/5	Score: 4/5	Score: 5/5	Score: 5/5	Score: 5/5	Score: 5/5	41/45
6 and 7.	Yes – life	Yes – explicit re	Realistic	Where possible	Yes – seeks to	Yes – links to	Uses NIWA 2-D	Yes – commitment to	Yes – NIWA,	41/45
Waiau and	supporting needs,	impacts of dams	objectives	this has been	establish	Regional Plan	and related	gathering baseline	DoC, ECan,	
Hurunui river	flow variability,	on rivers and on	adjusted	done, but	baseline	with built in	modelling;	information to	university,	
flows	minimum flows	Lake Sumner;	according to	probably a lack	conditions,	review	complemented by	measure changes	augmented by	
		and effects of lowered flows	benefits and	of information	but silent on	processes	expert opinion	against	other experts	
		on river habitat,	relationships to other management	on likely responses in	methods				as appropriate	
		food supplies	options	some areas						
	Score: 5/5	Score: 5/5	Score: 5/5	Score: 3/5	Score: 4/5	Score: 5/5	Score: 5/5	Score: 4/5	Score: 5/5	
11. Water	Yes, cause and	Mostly, effects	Yes, although	Yes, clear links	Yes, at all	Yes, an explicit	Refers to all	Identifies need to	Uses NIWA	39.5/
quality	effects identified	clearly	some	to outcomes by	scales from	reference to	relevant published	gather further	and ECan	45
quanty	with emphasis on	articulated, e.g.,	uncertainties –	controlling	whole of river	adaptive	information and	information,	scientists	43
	N & P	N & P and	these are made	pollutants,	to farm	management	put into	especially at river	Scientists	
	relationships,	algae, but some	explicit	where known	to turin	management	appropriate	mouths		
	where known	still poorly	onphon				context			
		understood								
	Score: 3.5/5	Score: 3/5	Score: 4/5	Score: 4/5	Score: 5/5	Score: 5/5	Score: 5/5	Score: 5/5	Score: 5/5	

Strategies for improving science relevance, and it use

- Ensure issues with a science connection are identified early
- Gather and provide the best available information, including interpretation where possible
- Where the science is contested set up a presentation and discussion forum
- Develop a credible process to peer review 'grey', especially consultant, literature
- Use guiding principles to encourage inclusion of science in policy
- Involve the committee in the generation of science needs

Some conclusions and other insights

- More scientists should contribute their expertise to collaborative and 'wicked' environmental problem resolution processes.
- In these circumstances scientists will face major challenges to their credibility, to their patience, and to the other work they are trying to complete.
- But, knowing that their input will be carefully scrutinised scientists should be guided by a set of principles, aside from that of behaving responsibly – these guiding principles should be constructed around those that scientists would typically use in their day-to-day research and management interactions.
- Even after all of this there other more subtle strategies that scientists can use, ultimately knowing that 'every word counts', to get outcomes and outputs that are science informed.
- So is it worth it?

YES!

