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Abstract 

This paper examines whether there is room for the improvement of farm program decisions 

through the incorporation of mathematical optimization in the practical planning process. Probing 

the potential for improvement, we investigate the cases of four German cash crop farms over the 

last six years. The formal planning approach includes a systematic time series analysis of farm-

specific single gross margins and a stochastic optimization model. In order to avoid solutions that 

simply exceed the farmer’s risk tolerance, the apparently accepted variance of the observed pro-

gram’s total gross margin which represents an observable reflection of the individual farmer’s risk 

attitude is used as an upper bound in the optimization. For each of the 24 planning occasions, the 

formal model is used in a quasi ex-ante approach that provides optimized alternative programs. 

The total gross margins that could have been realized if the formally optimized programs had been 

implemented are then ex-post compared to those that were actually realized. We find that the farm-

ers could have increased their total gross margins significantly if - instead of using simple routines 

and rules of thumb - they had used the more sophisticated formal planning model. However, we 

also find that the superiority of formalized planning approaches depends on the quality of statistical 

analysis and the resulting forecasting model. Using our approach for practical decision support im-

plies that farmers first specify their “own” production programs without the formal planning aid. 

Then, an alternative program can be provided which leads to superior expected total gross margins 

without exceeding the farmer’s accepted total gross margin variance. 

Keywords: production program planning, optimization, uncertainty, static distributions, stochastic 

processes 

JEL classification: C1, C61, M11, Q12 
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Introduction 

Optimization procedures (linear and quadratic programming) have been receiving a lot of attention 

in agricultural-economic research and teaching for several decades (cf. e.g. Heady and Candler 

1958; Brandes 1974; Dent, Harrison, and Woodford 1986; Rae 1994; Hardaker et al. 2004). In the 

fifties and sixties of the last century, soon after the simplex algorithm was found by Dantzig in 

1947 (cf. Dantzig 1963), agricultural economists started to use linear programming for farm plan-

ning. Early publications related to linear programming in agriculture either aimed at disseminating 

the mathematical knowledge by explaining the characteristics of the procedure (cf. e.g. 

Heady 1954; Boles 1955) or at pointing out its possible applications and general potential for farm 

management (cf. e.g. McCorkle 1955; Swanson 1961). As long as linear programming computer 

codes were not easily available, many efforts were made to reduce the structural complexity and 

size of the planning models. This concerned, for instance, the aggregation of production activities 

and the consideration of limited supplies and other constraints (cf. e.g. Huffman and Stanton 1969).  

Soon, agro-economists also aimed to improve optimization approaches by accommodating risk 

(uncertainty)1 in their models, either in the objective function or in the constraints. The first ap-

proaches include Chance Constrained Programming (cf. Charnes and Cooper 1959) or simple vari-

ant calculations and sensitivity analyses (cf. Dinkelbach 1969). While these early approaches to 

risk do not explicitly take account of probabilistic information in terms of distributions, later pro-

gramming approaches, following Freund (1956), explicitly resort to the variance, thus generating 

quadratic optimization problems. Looking for more convenient ways of computation, considerable 

efforts were made to find linear programming approximations to the quadratic risk programming 

problem (cf. Hazell 1971; Thomas et al. 1972; Chen and Baker 1974; Tauer 1983; Okunev and 

Dillon 1988), the best known of which is probably Hazell’s Minimization-Of-Total-Absolute-

Deviation (MOTAD) programming.  

                                                           
1 In this paper we use the terms “risk“ and “uncertainty“ synonymously, implying that there is probabilistic information regarding the ran-

dom variables. 
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At the end of the eighties and the beginning of the nineties, both linear and non-linear program-

ming computer codes became generally available. In spite of the necessary technical tools being at 

hand (for an overview cf. Patrick and DeVuyst 1995), it is surprising that optimization has none-

theless hardly been treated as a serious support for on-farm decision-making in the agricultural-

economic literature since. Even though the capacity for solving planning problems in situations in-

volving limited resources is well-known, agricultural economists have so far not engaged in sig-

nificant empirical research that investigates the benefits that could be derived from using optimiza-

tion models for practical decision support. With regard to teaching, Hanf (1991) even raised the 

question of whether valuable time at universities is wasted with linear optimization. Thus, optimi-

zation has predominantly remained confined to academic research. 

The planning of the production program based on formal optimization procedures requires the ex-

plicit definition of the set of restrictions, and thus of the set of feasible solutions. Furthermore, in a 

risky environment, the variability of economic parameters and the individual risk attitude need to 

be considered. Otherwise, a formal determination of the production program that maximizes the 

individual decision-maker’s objective function is not possible. Due to the empirical problems of 

quantifying individual risk aversion (cf. Jolly 1983; Just and Pope 2003; Hudson, Coble, and 

Lusk 2005), conventional optimization approaches under uncertainty do not usually provide a sin-

gle optimal solution. They rather provide - as a result of variant calculations - so-called risk effi-

cient (or stochastically efficient) combinations of expected profits and involved volatility. Al-

though thus one avoids the need to exactly quantify individual risk-attitudes, it is still difficult to 

obtain the remaining real-life data that are needed in formal optimization models. This refers to ca-

pacity and crop rotation restrictions as well as to the time series of the single gross margins. But 

even if one disposes of the farm-specific raw data, an adequate statistical analysis and a consistent 

processing of probabilistic information and of correlations between relevant stochastic variables 

remains quite laborious.  

Furthermore, statistical analysis may be error-prone due to questionable a priori presumptions. The 

simple fact that time series may exhibit trends, e.g., suffices to show that “static distribution mod-
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els” - i.e. the recourse to the mean and variance of past values considered equal in weight - do not 

represent good forecasting models. Nonetheless, some well-known concepts dealing with risk in 

agriculture use this assumption. MOTAD-models (cf. Hazell 1971), e.g., resort to the historical dis-

tribution. This implies that observed values are given equal weight. The same applies to most ex-

pected-value-variance (EV-) models (cf. e.g. Robison and Barry 1987). In multivariate analysis 

underlying EV-models, static normally distributed variables are commonly assumed for computa-

tional convenience (cf. e.g. Hazell and Norton 1986).2  

Recognizing the problem of simplistic probabilistic assumptions, Adams, Menkhaus, and Woolery 

(1980) as well as Musshoff and Hirschauer (2004) demonstrate that planning results in terms of 

strategies are very sensitive to how time series are statistically treated. Using trend-adjusted time 

series may be crucial, for instance. Adams, Menkhaus, and Woolery (1980, p. 19) consequently 

point out that “if researchers intend to use the E,V approach in providing decision making informa-

tion to producers, care should be exercised in the choice of income and risk measures used.” In 

contrast to a priori presumptions regarding a variable’s randomness, explicit time series analysis 

can be seen as searching for the stochastic process (time series model) that reflects the true stochas-

tic pattern of a variable’s development over time (cf. Pindyck and Rubinfeld 1998). Nonetheless, 

until now, stochastic optimization models have hardly been based on stochastic processes as de-

rived from explicit time series analysis. 

Questioning the extra value of formal risk programming models, a widespread opinion is that 

farmers - in particular with regard to the recurrent program decisions in crop farming - make near-

optimal choices based on experience, incremental learning and simple heuristics (cf. also Gigeren-

zer and Selten 2001). Hence, it is argued, they do not need to explicitly quantify planning assump-

tions such as differentiated crop rotation requirements, the risk associated with various production 

activities, and their individual risk aversion. In the past, many attempts have been made to assess 

the extra value of risk programming models by comparing the results of different formal (theoreti-

                                                           
2 Computational difficulties arising in the case of multiple, non-normally distributed correlated variables are, e.g., discussed in Buccola 

(1986), Preckel and DeVuyst (1992), and Sornette, Simonetti, and Andersen (1999). 
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cal) planning models (cf. e.g. Brink and McCarl 1979; Kingwell 1994; Pannell and Nord-

blom 1998). Most often, the results from deterministic optimization models are compared with 

those from risk programming models. Sometimes, the comparison includes different types of risk 

programming models. In this context Pannell, Malcolm, and Kingwell (2000) claim that the incor-

poration of risk and risk aversion in a planning model only causes marginal changes of the optimal 

results, thus not justifying the efforts associated with highly sophisticated risk modeling.  

In fact, formal optimization has scarcely found its way into the agricultural practice, except for the 

determination of minimum-cost mixtures in the feed industry. As a rule, the use of optimization 

procedures is confined to agricultural-economic research concerning itself with the analysis and 

prognosis of how certain groups of farmers adapt to changed conditions of their economic envi-

ronments (i.e. structural adjustments of the farming sector). Examples for such “policy models” are 

Positive Mathematical Programming (cf. e.g. Howitt 1995; Preckel, Harrington, and Dub-

man 2002), or Multi-Agent Models (cf. e.g. Balmann 1997; Berger 2001). Another application is 

efficiency analysis via Data Envelopment Analysis (cf. Coelli, Rao, and Battese 1998; Lissitsa and 

Odening 2005). 

While an evolutionary economics perspective may explain how sectors at large adapt (quite well) 

to changes in their environments through selection and trial-and-error experiences of their mem-

bers, the question remains whether there is room for improvement of on-farm decisions through 

more sophisticated formal planning. With a view to the apparently lacking support of risky farm 

decisions through formal planning models, the goal of this paper is to examine empirically whether 

(and, eventually, by how much) farmers’ “intuitive” program decisions can be improved through 

adequate and manageable stochastic optimization procedures. We are the first, to our knowledge, 

to compare the results of theoretical models (normative benchmarks) generated in a quasi ex-ante 

analysis with empirically observed ones. Pursuing this goal, we can distinguish two sub-goals: 

first, we examine the suitability of different statistical models to represent the true stochastic pat-

tern of random variables. In other words: we analyze the performance of different forecasting 

models in conjunction with risk programming models. Second, we identify a manageable method 
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of how to obtain information regarding farmers’ risk attitudes from observed behavior. Doing so 

facilitates a model-endogenous recommendation of one alternative production program.  

Our exemplary empirical analysis is a case study looking at the performance of four German cash 

crop farms over a period of six years. For each of these 24 planning occasions, the formal planning 

model is used in a quasi ex-ante approach that provides optimized alternative programs. The total 

gross margins which could have been realized if the formally optimized programs had been im-

plemented are then ex-post compared to those that were actually realized by the farmers. In other 

words: each farm in each year under consideration is subjected to a normative benchmark derived 

from the formal optimization approach. In brief, our empirical benchmark analysis has the follow-

ing characteristics: 

a. The uncertainty of the single gross margins (of wheat, barley etc.) is quantified through a sta-

tistical analysis of individual farm data. The resulting probabilistic information is used for the 

required one-year-ahead forecasts that are fed into the risk programming model. Three differ-

ent variants of statistical analysis, and thus forecasting models, are tested: (1) estimation of 

“static distributions”, (2) linear time series analysis, and (3) “unbiased” time series analysis 

which allows for linear and non-linear stochastic processes. 

b. The farmer’s subjective risk attitude is seen as finding one observable reflection in his choice 

of production program and his apparently accepted variance of the total gross margin. In the 

formal approach, this expression of his risk attitude is considered explicitly by the use of the 

observed variance as an upper bound in the optimization model. 

c. For each of the 24 planning occasions, and for each forecasting models as derived from the 

three variants of statistical analysis (cf. a.), formal optimization models are run. These risk 

programming models maximize the expected total gross margin subject to each farm’s limited 

resources and each farmer’s admissible variance (cf. b.). Comparing the hypothetical results of 

the planning variants with the empirical ones facilitates preliminary conclusions regarding the 
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general question of whether there is room for improvement of on-farm decisions. It also sheds 

light on the relative appropriateness of the different forecasts.  

The remainder of the paper is structured as follows: the second section briefly describes the em-

pirical data base. This includes the available resource supplies and the crop rotation requirements 

as well as the time series of the farm-specific single gross margins. In the third section, we describe 

the three variants of how the single gross margin time series are statistically analyzed. In the fourth 

section, we describe the formal optimization model and the procedure of the empirical perform-

ance analysis. We also relate our approach to conventional risk programming approaches. Section 

five presents the results of the performance comparison between the empirically observed and the 

formally derived alternative production programs. Finally, we provide conclusions in section six. 

Database 

We are considering four large cash crop farms in Brandenburg, North-East Germany. Farms 1, 2, 

and 3 are located about 50 km west of Berlin, and farm 4 is about 100 km north of Berlin. The av-

erage of their (quasi-constant) acreage over the last six years has been 729 ha (farm 1), 1 111 ha 

(farm 2), 1 210 ha (farm 3), and 175 ha (farm 4). Three workers are employed on farm 1, five on 

farm 2, four on farm 3, and one is on farm 4. The major production activities considered by farm-

ers 1, 2, and 3 include winter and spring wheat, winter rye, winter and spring barley, winter canola, 

corn, and non-food canola or set-aside land. While having an otherwise similar crop mix, any 

spring crops are rejected by farmer 4.  

For all farms, minor crops such as alfalfa, oil flax or peas are excluded from the performance com-

parison. These crops represent rather fancy activities than serious production activities. Their pro-

portion is almost irrelevant on all farms. Sugar beets, while being a relevant crop, are not consid-

ered in the model either. Being profitable without question, they are known to be grown with the 

maximum possible production volume according to the quota allocated to each farm. Excluding 

both fancy activities and the most competitive crop from the model considerations does not impede 
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the insight to be gained from the analysis. It only leads to a shift in the level of both the empirical 

and the optimized total gross margins and is therefore irrelevant for the performance comparison.  

The farmers were interviewed with respect to the annual single gross margins that were obtained 

over the last six years and the factor endowment (human resources and farm land). We also in-

quired about the number of field working days, the maximum working hours per day, and the time 

required for the various activities in the critical seasons March/April, May/June, mid-July/mid-

September, and mid-September/mid-November. Furthermore, the restrictions of the crop rotation 

(minimum and maximum proportions of the particular crops) were considered. We cross-checked 

the farmers’ answers related to crop rotation by looking at the empirical crop proportions. This al-

lowed us to correct some of the data gained from the interviews. The manager of farm 1 indicated 

e.g., that he would grow a maximum of 50 % wheat. However, looking at his production programs, 

one could detect that wheat was grown on up to 53.5 % of the acreage. Consequently, this figure is 

used as the restriction of the crop rotation in the optimization model.  

Both yield and market risks are embedded in the single gross margins of each crop. Thus, farm-

specific time series of single gross margins are needed to specify the probabilistic information rele-

vant to each farmer for his program decision. In principle, in time series analysis, data sets should 

be as large as possible. However, due to the structural discontinuity at the beginning of the nineties 

(collapse of the centralized economy and transition to market economy), farm-specific gross mar-

gins of before 1992/1993 for farms located in the new federal states of Germany often contain am-

biguous information or are not available at all. Hence, we construct proxies for the years 1980 to 

1992. These proxies are site-specific single gross margins which are based on yields obtained on 

comparable soils and under comparable natural conditions in the old federal states of Germany and 

on West German price data (ZMP, several years; LSD Brandenburg 2003). 

The time series available at the respective planning dates 1* −t  comprise the years 1980=t  to 

1* −t . The considered planning dates 1* −t  are 1998, 1999, 2000, 2001, 2002 and 2003. Thus, a 

farm-specific time series of 19 data is available for each crop at the first planning date “fall 1998”. 
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For each of the following planning dates, the available time series increases by one year. For each 

single gross margin, year and farm, the forecasting models, described hereafter in detail, are used: 

(1) static distributions, (2) linear time series models, and (3) unbiased time series models.  

Time Series Analysis 

Forecasting Model 1: Assuming Static Distributions  

Forecasting model 1 implies that one determines a static parametric distribution for each of the sin-

gle gross margins. According to the Chi-Square, Kolmogorov-Smirnov and Anderson-Darling 

tests, the normal distribution cannot be rejected for any of the considered single gross margin time 

series (at a significance level of 5 %).3 However, when compared to the normal distribution, Beta, 

logistic and/or triangular distributions show a slightly better match with the empirical distributions 

in some cases. In agreement with the standard approach (cf. Hazell and Norton 1986, p. 81), we 

nonetheless assume a normal distribution for all single gross margins. 

Let j
tGM  denote the gross margin per unit of production activity j  observed at time t . Then the 

assumption of a static normal distribution for a single gross margin can be described as follows: 

( ) j
t

N

t

j
t

j
t

j
t

j
t GM

N
GMEGM *

11980
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***

1 χχ +⋅=+= ∑
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The future gross margin j
tGM *  results from its expected value ( )j

tGME *  and a [ ]j
tN *,0 σ -normally 

distributed random component j
t*χ  (error term, white noise). For a static distribution, the expected 

value corresponds to the mean. The standard deviation of the error term j
t*σ  simply reflects the 

standard deviation of all observed values. We introduce notation (1) - even though it is rather un-

usual for simple distributions - on grounds of consistency with the notation for the stochastic proc-

esses described below. 

                                                           
3 We use the MS-EXCEL Add-In BEST FIT to analyze which distributions are plausible for the single gross margins. 



11 

Forecasting Model 2: Assuming Linear Time Series Models 

Allowing for stochastic processes implies that one examines the time-dependent pattern of random 

variables through time series analysis. Abstracting from discontinuities, a stochastic process repre-

sents the best assumption with regard to the variable’s distribution at future points in time. Auto-

Regressive-Integrated-Moving-Average models of the order p, d and q (ARIMA(p,d,q)-models) 

are linear time series models. Due to their flexibility, ARIMA(p,d,q)-models are used to represent a 

multitude of stochastic economic processes (cf. e.g. Pindyck and Rubinfeld 1998). 

The ARIMA(p,d,q)-model that fits best to a particular times series can be determined with the 

Box-Jenkins test procedure (Box and Jenkins 1976). According to this test, an AR(p)-process re-

sults for all single gross margin time series in our exemplary analysis: 

( ) j
t
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u

j
ut

j
u

jj
t

j
t

j
t GMGMEGM *

1
*0*** χααχ +⋅+=+= ∑

=
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j
0α  denotes a constant, j

uα  denote the weight factors that need to be estimated for the last p  ob-

servation values j
utGM −* , and j

t*χ  describes a [ ]j
tN *,0 σ -normally distributed error term. It should 

be noted that the expected value as well as the error term can, and most often will, differ from the 

ones obtained with the static distribution model even if the same data are analyzed. 

Forecasting Model 3: Allowing for Non-linear Time Series Models  

Recent research emphasizes the importance of non-linear dependencies in time series (e.g. Chavas 

and Holt 1991; Wei and Leuthold 1998). Non-linearity cannot be identified with standard statistical 

procedures such as the Box-Jenkins test (cf. Box and Jenkins 1976) or the Dickey-Fuller test (cf. 

Dickey and Fuller 1981). These “conventional” tests presume a priori linearity. Hence, more so-

phisticated statistical methods are needed which do not predispose linearity, but which facilitate the 

unbiased identification of both linear and non-linear processes. Artificial neural networks, increas-

ingly applied in the field of financial analysis for predicting stock prices and interest rates (cf. e.g. 

Bishop 1995; Haykin 1999), have the capacity to approximate both linear and non-linear relation-
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ships. The result of a neural network analysis, however, is always an “implicit” model; i.e. no 

mathematical formulation of the time series is provided. 

The method of “heuristic self-organizing time series models” originally described by Ivachnenko 

(1983) offers an alternative for the identification and specification of non-linear stochastic relation-

ships (cf. Farlow 1984; Mueller and Lemke 2003). Compared to neural networks, the big advan-

tage of this method is that it provides a mathematical formulation of the time series. It facilitates an 

automatic specification of a time series model of “optimal complexity“ without the need for any a 

priori assumptions regarding the structure (dimension of the polynomial).  

A special class of self-organizing algorithms is the so-called Group Method of Data Handling 

(GMDH). GMDH-algorithms combine the connectionistic approach to artificial neural networks 

with the classical method of regression. They generate general polynomial process models (cf. 

Mueller and Lemke 2003, p. 77): 
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These polynomials consider up to p  preceding values with different weights as well as non-linear 

terms, the potential number of which exponentially increases with the number of considered pre-

ceding values. Thus, the functional form of the polynomial may easily get quite large. Its general 

structure however, can be understood as an AR(p)-process (upper line) which is extended by a 

non-linear component (lower line). 

Heuristic self-organizing time series models determine both the polynomial’s optimal dimension 

and its parameters through starting from a very simple model and gradually increasing in complex-

ity. The program divides the data into a training data set and a test data set used for cross-

validation. First, a multitude of model hypotheses are generated based on the training data set. 

Then these model hypotheses are evaluated on the basis of the test data set. The model of optimal 

complexity is found as soon as one detects an over-fitting of the training data. Over-fitting means 
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that a further increase in the model’s complexity results in white noise of the training data being 

structurally mirrored in the model. Consequently, the model’s predictive power for the test data de-

creases.  

In the present application a regression model - non-linear if appropriate - is automatically generated 

for each single gross margin by means of GMDH.4 While the GMDH-model has the principal ca-

pacity to account for any distribution, we assume normally distributed error terms since the results 

of the Chi-Square, the Kolmogorov-Smirnov and the Anderson-Darlings tests show that the nor-

mal distribution cannot be rejected at a significance level of 5 %. 

Optimization Model and Performance Analysis 

Figure 1 illustrates and subsumes the methodical steps of data collection and processing that are 

needed to optimize the production program. As described above, data are collected for each year 

and farm. This concerns the realized single gross margins up to the planning date, the constraints 

such as acreage, labor and crop rotation requirements, the empirically observed production pro-

gram, and the achieved single gross margins realized in the target year. Then the single gross mar-

gin time series up to the respective planning date are statistically analyzed. The resulting probabil-

istic information includes the correlations, variances, and expectation values of the single gross 

margins. These values are specified separately in each of the three variants of statistical analysis. 

Depending on the consequently differing model inputs, the optimization model, of which the gen-

eral structure is described below, will thus provide three alternative planning variants for each tar-

get year and farm.  

                                                           
4 We use the software KNOWLEDGEMINER for Windows. 
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Figure 1.  Synopsis of the methodological procedure 
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margins per unit of production activity j . j
tx *  describe the levels of the production activities. i

tb *  

denote the capacities (restrictions), and ji
ta ,
*  represent the capacity requirements per unit of produc-

tion activity. empV  is the total gross margin (TGM-) variance inherent to the empirically observed 

production program. V , in contrast, denotes the TGM-variance of the optimized program. Using 

empV  as an upper bound ensures that the reflection of the farmer’s risk attitude as observed in his 

own choice of production program is taken into account in the optimization.5  

The calculation of the variance is based on the results of the statistical analysis; i.e. the standard 

deviations and the correlation coefficients of the single gross margins (in the case of static distribu-

tions), and the standard deviations and the correlation coefficients of their error terms (in the case 

of stochastic processes). Since the J  random variables (single gross margins) are additively com-

bined, the TGM variance of the empirical production program empV  can be calculated in a way 

analogous to a portfolio consisting of J  asset positions (cf. Jorion 1997, p. 150): 

( ) ∑∑∑
= <=

⋅⋅⋅⋅⋅+⋅=
J

j

J

jk

kjkk
empt

jj
empt

J

j

jj
emptemp xxxV

1

,
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1

2
*, 2 ρσσσ  (5)

kj,ρ  denote the correlation coefficients between the single gross margins j  and k , or between 

their error terms. jσ  and kσ  describe the respective standard deviations. The correlation coeffi-

cient and the standard deviation are determined on the basis of the empirical data collected up to 

the particular planning date. j
emptx *,  and k

emptx *,  respectively, represent the weight (acreage) of the 

production activities in the farmer’s empirically observed program. The TGM-variance of the op-

timized program V  is to be determined in a way analogous to (5). One merely needs to replace the 

observed production levels j
emptx *,  and k

emptx *,  by the optimized production levels j
tx *  and k

tx * . The 

TGM variance can only be derived analytically according to (5) if all single gross margins (in the 

case of static distributions) or all error terms (in the case of stochastic processes) are normally dis-

tributed. This being the case in the three variants of statistical analysis, we can do without numeri-

cal methods for determining the variance. 

                                                           
5 For the sake of convenience, we omit the subscript t* when referring to E(TGM), Vemp and V. Nonetheless, they always correspond to the 

respective target year. 
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After the first optimization run, farmers are asked whether they accept the resulting programs and 

whether they consider them feasible and consistent with their personal preferences and the limited 

resource supplies. If necessary, supplementary constraints are added to the model. This is repeated 

until no further modifications are needed. This step by step procedure ensures that the optimized 

programs, while differing from the farmers’ realized programs, are both feasible and acceptable for 

the real decision-makers.  

Let us now subsume the essentials that are being considered by the optimization model (4): 

• Only data that are available to the farmers at the respective planning dates 1* −t  are used in 

the time series analysis and optimization; i.e., solely the single gross margins up to 1998 (1999, 

etc.) are assumed to be known when the production program for the target year 1999 (2000, 

etc.) is optimized.  

• The optimization model considers the reflection of the farmer’s individual risk attitude as ob-

served in his own choice of production program by including the variance of the total gross 

margin from his actual program as an additional restriction. This facilitates individual decision 

support for farmers who differ in their risk aversion. 

• While the efficiency challenge of farm management is far too large to be solved in a single-

handed effort (or to be fully incorporated in a mathematical model of decision analysis for that 

matter), practical decision support subdivides the problem into manageable tasks (partial plan-

ning). Program optimization is a partial planning task. It considers the limited resource supplies 

and farm-specific single gross margins as “givens” and confines itself to identifying the opti-

mal combination of production activities. It does not provide any answers regarding the best 

investment strategy (and thus the limited resource supplies at any one time) or regarding the 

best specification of activities (use of variable inputs such as fertilizer, plant protection, etc.) 

and marketing strategies (and thus the achievable farm-specific single gross margins). 
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Benchmark Comparison 

We finally calculate the normative benchmark, i.e. the hypothetical total gross margin TGM  

which would have been realized in the target year if the optimized production program had been 

implemented: 

∑
=

⋅=
J

j

j
t

j
t xGMTGM

1
**   (6)

j
tGM *  indicate the actually realized single gross margins in the target year, and j

tx *  denote the 

planned proportions of crops as derived from the formal planning model. An ex-post comparison 

between the normative benchmark TGM  and the farmer’s actually realized total gross margin 

empTGM  reveals whether an extra value could have been derived from using the formal planning 

model. empTGM  is to be determined in a way analogous to (6). One merely needs to replace the 

optimized production level j
tx *  by the farmer’s observed production levels j

emptx *, . Regarding the 

validity of the performance comparison, it should be emphasized that no informational advantage 

was accorded to the formal planner. The single gross margins realized in the target year are exclu-

sively used for the final benchmark comparison. 

A Brief Comparison with Conventional Quadratic Risk Programming  

While bearing resemblance to conventional EV-models the proposed optimization approach under 

uncertainty exhibits some particularities: an EV-model represents a set of variant calculations each 

of which maximizes the expected value of the total gross margin for some predefined variance (cf. 

figure 2, left). Thus, a set of efficient combinations of variance and expected total gross margin are 

provided. If one assumes that the total gross margin is normally distributed, the EV-efficient set is 

also risk efficient, meaning that the solutions are second-degree stochastically dominant (Hardaker, 

Pandey, and Patten 1991). From a theoretical point of view, this assumption seems plausible due to 

the central limit theorem. This being confirmed according to the statistical tests in our application, 

we will deal with comparing this paper’s approach to the general EV-approach hereafter.  
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Figure 2.  Classical procedure in the EV-model (left) vs. practical decision support 
(right) 

For distinguishing our practical risk approach from the conventional method of handling unknown 

risk attitudes, we may refer to Hardaker, Pandey, and Patten (1991, p. 22) who describe the need 

for further research as ”finding the best way of generating smaller and yet more relevant stochasti-

cally efficient solution sets.” With regard to practical decision support, providing a solution set, 

however small, remains dissatisfying. If the farmer’s individual risk attitude could be ascertained, 

the combination of risk and income that maximizes his utility could be identified endogenously 

from the risk efficient set. However, eliciting individual risk aversion is exactly the problem. That 

is, in conventional models the decision-maker is left alone with an exogenous choice to single out 

one combination of risk and income out of the many provided in the solution set. 

Aiming at supporting practical decision-making, we maximize the expected total gross margin sub-

ject to the constraint of not exceeding the empirically observed willingness to accept risk. This 

means taking the variance of the total gross margin empV , inherent to the production program cho-

sen by the farmer, as an observable, albeit incomplete, reflection of his subjective risk attitude (cf. 

figure 2, right). Realizing that the observed program is not only influenced by the risk attitude, we 

do not argue that this reflection represents the farmer’s risk attitude completely. Nor do we pre-

sume that our procedure necessarily ensures the identification of the production program that 

maximizes the farmers’ utility. Rather we focus on the manageability and applied usefulness of the 

risk efficient programs 
optimized program expected value 

variance 

E(TGMemp) 

the farmer’s observed 
program 

     E(TGM) 

expected value 

variance  Vemp 

feasible solutions 
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approach which allows for a clear endogenous recommendation by reducing the efficient solution 

set to one single combination of variance and expected total gross margin. Technically speaking, 

we limit the set of feasible solutions to those yielding a higher or identical expected total gross 

margin at a lower or identical variance as the one previously accepted by the farmer. This is 

equivalent to limiting the formal search to an identifiable subset of solutions that are second-degree 

stochastically dominant compared to the farmer’s own decision. While this subset does not neces-

sarily include all second-degree stochastically dominant solutions, we are sure to increase (or at 

least meet) the farmer’s expected utility compared to the one resulting from his routine program.  

Discussion of Results 

Comparison of Profitability 

Until now, none of the decision-makers of the considered farms has been using formal optimiza-

tion procedures to determine the production program. In fact, production planning is completely 

based on non-formal routines and intuition. Table 1 compares the average annual total gross mar-

gins realized by the farmers with those that could have been realized if the formally optimized pro-

grams had been implemented.  

As an additional point of reference the first row of table 1 shows the hypothetical room for im-

provement (extra value) that would be generated if one had a “perfect forecasting model“, i.e. a 

model, which exactly predicts the single gross margins in the respective target years. If such per-

fect information was available, the total gross margin could be improved by 15.9 % on an average 

over all farms and all years. Interpreting this figure one should note that a perfect prognosis is 

never available in reality because any time series contains unsystematic and unpredictable random 

errors. Hence, the figures of change depicted in the first row of table 1 are only a first hint that it is 

worthwhile examining the potential for improvement that might be generated by using formal pro-

cedures of statistical analysis and stochastic optimization. 



Table 1.  Average Annual Total Gross Margins (in €) of Realized and Optimized Production Programs  
Farm 1 Farm 2 Farm 3 Farm 4 Sum over all farms  

Empirical Optimized Change Empirical Optimized Change Empirical Optimized Change Empirical Optimized Change Empirical Optimized Change 
“Perfect forecast-
ing model“ 323 002 360 063 11.5 % 325 636 413 944 27.1 % 432 118 482 390 11.6 % 78 894 87 826 11.3 % 1 159 650 1 344 224 15.9 % 

Approach 1:  
assuming static 
distributions 

323 002 307 874 -4.7 % 325 636 360 656 10.8 % 432 118 420 384 -2.7 % 78 894 80 286  1.8 % 1 159 650 1 169 200  0.8 % 

Approach 2:  
assuming linear 
time series  

323 002 344 690  6.7 % 325 636 373 466 14.7 % 432 118 450 237  4.2 % 78 894 82 878  5.1 % 1 159 650 1 251 259  7.9 % 

Approach 3:  
allowing for non-
linear time series 

323 002 349 028  8.1 % 325 636 374 385 15.0 % 432 118 446 061  3.2 % 78 894 82 619  4.7 % 1 159 650 1 252 093  8.0 % 

 

Table 2.  Annual Total Gross Margins (in €) of Realized and Optimized Production Programs Based on the Superior Approach 3 
Farm 1 Farm 2 Farm 3 Farm 4 Sum over all farms 

Target year t* Empirical Optimized Change Empirical Optimized Change Empirical Optimized Change Empirical Optimized Change Empirical Optimized Change 

1999 480 466 511 087 6.4 % 370 455 506 530 36.7 % 609 084 622 857 2.3 % 66 239 66 636 0.6 % 1 526 245 1 707 110 11.9 % 

2000 339 544 347 890 2.5 % 295 934 315 797 6.7 % 462 911 479 697 3.6 % 76 887 80 250 4.4 % 1 175 276 1 223 634 4.1 % 

2001 434 064 436 099 0.5 % 410 929 434 361 5.7 % 593 912 577 690 -2.7 % 74 546 77 211 3.6 % 1 513 451 1 525 360 0.8 % 

2002 240 468 243 935 1.4 % 303 739 320 128 5.4 % 308 538 321 348 4.2 % 59 748 65 338 9.4 % 912 493 950 749 4.2 % 

2003 168 913 274 723 62.6 % 255 150 326 454 27.9 % 263 096 285 644 8.6 % 59 389 63 460 6.9 % 746 548 950 282 27.3 % 

2004 274 556 280 436 2.1 % 317 608 343 042 8.0 % 355 169 389 127 9.6 % 136 556 142 820 4.6 % 1 083 889 1 155 425 6.6 % 

Average over  
all years 323 002 349 028 8.1 % 325 636 374 385 15.0 % 432 118 446 061 3.2 % 78 894 82 619 4.7 % 1 159 650 1 252 093 8.0 % 
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The rows 2 to 4 depict the extra value that is provided by formal planning based on the three dif-

ferent forecasting models described above. Only farm 2 could have improved its average annual 

performance significantly through the formal planning approach 1. The increase would have been 

quite low in farm 4, and on farm 1 and 3 the average annual performance would even have been in-

ferior to that of the actual routine programs. While not being depicted, a look at the crop mix of 

farm 2 reveals that the optimized program suggests a sharp decrease of the proportion of corn. 

Farmer 2 has actually planted corn on 15 % of his acreage on an average whereas it is quasi irrele-

vant in the programs of the other three considered farms. Its comparative competitiveness being 

low, the 15 % proportion of corn on farm 2 must be interpreted as a serious planning mistake. It 

seems that the mistake is so gross that it could even have been attenuated through an optimization 

approach based on an ill-founded forecasting model. Despite its extraordinary (positive) effect on 

farm 2, the overall change of performance caused by approach 1 over all farms and all years is 

nearly zero. We must therefore conclude that a “standard” risk programming approach which in-

corporates risk through static distributions may even be inferior to routine decision-making of rea-

sonably good farm managers. 

Quite the reverse, that is, very encouraging results are found for the two other planning approaches 

(see the third and fourth row of table 1). The average total gross margin could have been improved 

significantly on all four farms if farmers had used formal optimization based on probabilistic in-

formation derived from systematic time series analysis: farmer 1 e.g., actually achieved an average 

total gross margin of € 323 002. Optimized production programs based on forecasting model 3 

would have increased that amount to € 349 028. In other words: the average annual total gross 

margin in farm 1 could have been increased by 8.1 % (or € 26 026 per annum). In farm 2 the re-

spective figures amount to 15.0 % (or € 48 749 per annum), in farm 3 to 3.2 % (or € 13 943 per 

annum), and in farm 4 to 4.7 % (or € 3 725 per annum).  
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Averaged over all farms, the potential for improvement compared to the farmers’ routine programs 

amounts to nearly 8 % (7.9 % for approach 2, and 8.0 % for approach 3).6 That is, even though 

much more effort went into the statistical analysis of approach 3, the results are only slightly supe-

rior to those derived from linear time series models. This might be interpreted as preliminary evi-

dence that, with GMDH models which allow for non-linear time series, we have arrived at a stage 

of model sophistication where the marginal returns of increasing planning efforts sharply decrease. 

Going beyond the consideration of averages, table 2 gives particulars of the performance of the 

most competitive planning approach 3 for each of the 24 planning occasions. The most essential 

results can be summarized as follows: first, the optimized programs derived from approach 3 out-

perform the empirical ones in 23 out of the 24 planning occasions. While not being depicted, it can 

be added that the same applies to approach 2. Approach 1, in contrast, outperforms the realized 

programs in merely 11 out of the 24 occasions. Second, being the odd exception, the total gross 

margin realized in the year 2001 by farmer 3 is higher than the one that would have been achieved 

with approach 3. At the planning date in the year 2000, however, the expected total gross margin of 

the optimized production program was 1.5 % higher than the one of the farmer’s program. This 

underlines the well-known fact that in an uncertain environment an inferior decision may per-

chance result in higher profits, but that uninformed choices will not be superior in the long run. 

Contrary to studies on production planning under uncertainty which compare the results of deter-

ministic and stochastic (theoretical) planning models with each other, we explicitly use the results 

of formal optimization models as a normative benchmark for the results that have been empirically 

realized by farmers. On grounds of comparability with theoretical model comparisons, we addi-

tionally analyze a deterministic optimization model, i.e. we assume risk-neutral decision-makers. 

The deterministic model, which is based on the same forecasts as approach 3, is used as a second 

benchmark in our empirical performance analysis. Table 3 depicts the results.  

                                                           
6 Additionally one could mention that the average total gross margin over all farms and years could be increased by 4.4 % if the formal 

planning approach had been based on a (linear) trend regression of the single gross margin time series (at a significance level of 5 %). In 

other words: optimization based on such a “rudimentary time series model” would still be inferior to optimization based on explicit time 

series analysis because a linear trend may be only one out of the many systematic components of a time series that should be considered. 
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Table 3.  Performance Comparison of Different Planning Approaches 

N o r m a t i v e  p r o g r a m   Empirically realized 
program derived from  

approach 3  
derived from  

deterministic approach Change 

Average annual expected 
total gross margin (€) 1 266 390 1 372 012 1 398 246  1.9 % 

Average variance 1.752·1011 1.737·1011 1.989·1011 14.6 % 

Ex-post average annual 
total gross margin (€) 1 159 650 1 252 093 1 267 844  1.3 % 

 

Our best risk programming model (approach 3) and the deterministic optimization model yield 

similar average expected total gross margins (sum over all farms), differing only by 1.9 %. Their 

difference is even less if one looks at post at the total gross margins that would have actually been 

achieved with the respective programs. While this may be prima facie amazing, premature inter-

pretations should be avoided. In any investigating as to whether formal programming models open 

up room for improvement of practical planning, the following essentials need to be considered:  

First, even though the expectation values may be similar, the programs derived from a determinis-

tic model may not be acceptable to risk-averse farmers. In our case we found, e.g., that the average 

total gross margin variance is 14.6 % higher than that of the risk programming model which con-

siders the empirically observed reflection of the farmer’s risk attitude (i.e. the empirical variance). 

Graphically speaking one would have to conclude that the EV-frontier is relatively “flat” in the 

relevant area, allowing for a significant decrease of volatility through a minor decrease of the ex-

pected total gross margin. Even for farmers with low risk aversion the program derived from the 

risk programming model might thus be superior. While not knowing farmers’ precise risk premi-

ums, this difference in variance provides evidence that relevant planning occasions exist where the 

consideration of risk is important. This finding is in contradiction to Pannell, Malcolm, and King-

well (2000, p. 72) who conclude that the “consideration of complexities such as risk aversion […] 

does not greatly affect farmer welfare.” 

Second, the comparison of different theoretical models does never facilitate conclusions regarding 

the potential for improvement of real-life decision making. Instead, the hypothetical performance 

of the formal planning model needs to be compared with the empirical performance that farmers 
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realize through their own routine decisions. That is, one really needs to compare the first and the 

second column of table 3. As already mentioned, this empirical performance comparison reveals 

that we were able to suggest a program which is acceptable to the farmers without doubt and which 

facilitates an average 8.0 % increase of the total gross margin over the of 24 planning occasions 

considered (see table 1 and table 2 for the details). 

Comparison of Production Programs 

Table 4 provides a rough characterization of production programs by comparing the farmers’ aver-

age crop mix over the six years with the optimized and more profitable mix that would have been 

derived from approach 3. Comparing the programs and identifying the main divergences provides 

first evidence for systematic planning mistakes made by farmers.7 

 

Table 4.  Average Crop Proportions (in %) Empirically Realized by Farmers Com-
pared to those Derived from the Superior Planning Approach 3 

Farm 1 Farm 2 Farm 3 Farm 4  

Empiri-
cal 

Opti-
mized 

Differ-
ence 

Empiri-
cal 

Opti-
mized 

Differ-
ence 

Empiri-
cal 

Opti-
mized 

Differ-
ence 

Empiri-
cal 

Opti-
mized 

Differ-
ence 

Winter 
wheat 43.5 41.7 -1.8 22.1 25.9 3.8 42.4 40.8 -1.6 32.3 41.0 8.7 

Spring 
wheat 0.0 0.9 0.9 0.0 0.0 0.0 0.0 0.6 0.6 – – – 

Winter  
rye 22.3 39.0 16.6 16.2 38.3 22.1 19.3 30.7 11.4 24.4 31.7 7.3 

Winter  
barley 13.6 0.0 -13.6 8.2 2.7 -5.6 15.8 8.6 -7.2 17.5 0.0 -17.5 

Spring  
barley 1.2 0.0 -1.2 0.0 2.5 2.5 0.0 1.5 1.5 – – – 

Winter  
canola 9.5 6.4 -3.1 15.6 8.8 -6.8 10.4 6.9 -3.5 9.4 13.2 3.7 

Corn 0.0 0.0 0.0 15.1 0.2 -14.9 1.7 0.0 -1.7 – – – 

Non-food 
canola 9.2 12.1 2.8 0.0 0.1 0.1 6.4 8.4 2.0 12.4 9.3 -3.1 

Set-aside 0.8 0.1 -0.7 22.8 21.5 -1.3 3.9 2.4 -1.5 3.9 4.7 0.8 

 

                                                           
7 We only comment on the benchmark comparison with approach 3. The production mix being very similar, identical conclusions are to be 

drawn from a comparison with approach 2. 
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The most noticeable result of the comparison is that, according to the superior planning approach 3, 

the proportion of (winter) rye should be increased significantly in all considered farms. Rye is very 

draught-resistant. From a crop science perspective it is thus especially well suited for the natural 

conditions of Brandenburg which are characterized by low and uncertain rainfalls as well as by 

poor and quickly draining soils. Searching for the most common and apparent change suggested by 

the formal planning approach 3, we may conclude that, besides farmer’s 2 particular planning mis-

take regarding corn, all farmers should reduce their proportion of winter barley in favor of rye.  

This result is an indication for systematic planning errors made by the farmers in the past. Evolu-

tionary economics (cf. e.g. Nelson and Winter 1982) could be used to explain this finding: often-

times, even important economic decisions are not supported by formal decision models. Rather, 

they are based on the decision-maker’s experience gathered in the course of the past decades and on 

simple heuristics such as “never make any decision that differs very much from past ones” (cf. e.g. 

Gigerenzer and Selten 2001). In an environment where the relative competitiveness of different 

crops, e.g., changes quickly, decision-makers may thus not be quick enough to adapt to changed 

conditions. In other words: we might ask the question whether (boundedly rational) farmers making 

routine production program decisions learn too slowly. In the considered context it seems reason-

able to speculate that farmers have not yet adapted their routines to account fully for two major 

changes of their relevant environment: on the one hand, the enormous progress in rye breeding over 

the last years which brought rye yields up to competitive levels, and, on the other hand, the increas-

ingly precarious rain falls in Brandenburg, possibly caused by climatic change. Slow learning and 

adaptation, in turn, justifies the use of formal decision aids by farmers and extension services. 

Summary and Conclusions 

At first view, this paper seems to revive the discussion about the benefits of optimization models in 

applied agricultural program planning - a discussion that has been virtually closed in the past for 

the seemingly good reason that agricultural practitioners have found neither need nor want to use 

formal approaches in on-farm planning. Our exemplary analysis of four farms and six planning 
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years, however, indicates that new grounds may be broken. The identified dimension and continu-

ity of the efficiency gains that could have been achieved if systematic time series analysis and suit-

able stochastic optimization models had been used is quite astounding. In other words: using the 

hypothetical results resulting from the quasi ex-ante approach as a benchmark gives evidence that 

it is well worth the trouble to consistently use statistic information embodied in the farm-specific 

single gross margin time series.  

The formal approach used in this study provides practical assistance for dealing with the problem 

of individual risk attitudes. It simply includes the variance of the total gross margin inherent to the 

production program chosen by the farmer as an additional restriction in the stochastic optimization 

model. Any practical decision support procedure which relies on this approach will thus require 

that farmers first specify their “own” production programs without the formal planning aid, thus 

providing an observable reflection of their risk attitude. Then, one can search for alternative pro-

grams which - with the same or even less variance - lead to superior or at least equal expected total 

gross margins. With regard to decision theory it must be recognized that the recommended alterna-

tive does not necessarily represent the solution that maximizes the farmer’s utility. However, it 

generates extra value by providing practical decision support which - without the need to exactly 

specify the farmer’s risk aversion or utility function - identifies one solution that increases the 

farmer’s expected utility compared to his own routine-based decisions. 

Our methodical comparison of different variants of statistical analysis (static distributions vs. sto-

chastic processes) indicates that the extra value to be derived from formal optimization methods 

highly depends on the available data being adequately processed and used. Data may be time-

dependent and thus exhibit e.g. a trend. This simple fact suffices to show that conventional ap-

proaches, which prima facie resort to the mean and variance of past values considered equal in 

weight, do not represent good forecasting models. Inserting too simplistic assumptions into formal 

planning models may well cause their performance to be inferior to that of routine planning based 

on rules of thumb. The lack of planning quality could thus be an explanation why the formal opti-

mization approaches proposed in the past have not been accepted by farmers, and deservedly so.  
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While our analysis of four selected farms and six years provides first evidence for the potential of 

an adequate formal planning model to improve the efficiency of on-farm decision-making, its gen-

eral value needs to be investigated through further research. The evident capacity to outperform 

farmers’ routine decisions that was found in the case study warrants the effort. That is, we should 

test the model’s robustness to provide superior results by applying it to a larger number of farms in 

different regions and with different farm sizes, production structures and operating figures. In this 

context the following extensions may prove valuable:  

• As long as one is concerned with program planning on large farms, basically any crop rotation 

requirement can be translated into a respective (maximum or minimum) proportion of crops in 

any one year. This may be different on small farms where one needs to consider that fields, be-

ing of smaller but differing size, are not be further subdivided for different crops. Furthermore, 

soil quality may differ from one field to the other. Extending the model to include such field-

specific information requires additional effort but could be implemented in principal.  

• This paper solely addresses the partial planning problem “optimization of the production pro-

gram“. The proposed planning approach extracts probabilistic information from the time series 

of farm-specific single gross margins. This is equivalent with considering both the limited re-

source supplies and the farmers’ competencies regarding investment strategies and crop man-

agement as “givens”. The planning model could be extended to include, e.g., the optimal speci-

fication of single production activities (with regard to the use of variable inputs and technolo-

gies etc.). After a change of management competence regarding, let’s say, the factor intensities 

one needs to realize, however, that the farm-specific single gross margins observed in the past 

cannot be assumed any more to contain much useful information for the future. Instead one 

would need to resort to disaggregate values such yields, prices, input costs, etc. 

• We included the total gross margin variance inherent to the farmer’s observed program as a 

fixed restriction in the formal optimization model. Thus, we did not consider that farmers 

might be prepared, e.g., to accept some additional volatility if the expected increase of the total 
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gross margin covers their risk premium. That is, we cannot be sure to have found the utility 

maximizing production program. This does not impede the insights and clear-cut results of the 

analysis. In fact, the consequence is just that there may be even more room for improvement. 

One could investigate this by letting farmers choose from alternatives derived from a stepwise 

relaxation of the variance restriction. However, this means abandoning the model-endogenous 

recommendation of a single superior solution. 

• In our case study, extending the time series model to include non-linear structures did not add 

much extra value compared to simple linear models. This can be seen as evidence that increas-

ing planning efforts and further model sophistication do not pay due to decreasing marginal re-

turns. It might nonetheless be worthwhile to search for models that perform still better. Such a 

search could include models which allow for process parameters that are variable over time. 

Explicit GARCH-models could, for instance, be used in the case of a time-variable variance 

(cf. Bollerslev 1986; Koekebakker and Lien 2004).  

Decisions regarding the resources to be spent for planning are, like all economic choices, subject to 

efficiency considerations. Thus, additional efforts such as the introduction of formal and more so-

phisticated planning models need to be justified by additional benefits. In this context, one needs to 

know the economies of scale allowing for an efficient use of formal models in the first place. Fur-

thermore, before plunging into any of the above-mentioned activities, it should be checked whether 

the informational gains justify the additional costs. The critical farm size allowing for sufficient 

economies of scale in planning depends on the costs (including learning costs) associated with the 

introduction of optimization models. These costs, in turn, depend on the intellectual capability and 

knowledge of farm managers and thus, amongst other things, on the quality of teaching. Better 

trained agricultural managers and consultants will need less time and effort to adopt more sophisti-

cated approaches because they have less learning costs. 
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